A117544 Least k such that Phi(n,k), the n-th cyclotomic polynomial evaluated at k, is prime.
3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 6, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 1, 2, 2, 14, 3, 1, 2, 10, 2, 1, 2, 1, 25, 11, 2, 1, 5, 1, 6, 30, 11, 1, 7, 7, 2, 5, 7, 1, 3, 1, 2, 3, 1, 2, 9, 1, 85, 2, 3, 1, 3, 1, 16, 59, 7, 2, 2, 1, 2, 1, 61, 1, 7, 2, 2, 8, 5, 1, 2, 11, 4, 2, 6, 44, 4, 1, 2, 63
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1000 from T. D. Noe)
Programs
-
Maple
f:= proc(n) local C, x, k; C:= unapply(numtheory:-cyclotomic(n, x), x); for k from 1 do if isprime(C(k)) then return k fi od end proc: map(f, [$1..200]); # Robert Israel, Apr 22 2019
-
Mathematica
Table[k=1; While[ !PrimeQ[Cyclotomic[n,k]], k++ ]; k, {n,100}]
-
PARI
a(n) = my(k=1); while (!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Apr 22 2019
Formula
Phi(n, a(n)) = A307687(n). - Robert Israel, Apr 22 2019
Comments