A117552 Largest partial sum of the increasingly ordered divisors of n, not exceeding n.
1, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 10, 1, 10, 9, 15, 1, 12, 1, 12, 11, 14, 1, 24, 6, 16, 13, 28, 1, 27, 1, 31, 15, 20, 13, 25, 1, 22, 17, 30, 1, 33, 1, 40, 33, 26, 1, 36, 8, 43, 21, 46, 1, 39, 17, 36, 23, 32, 1, 58, 1, 34, 41, 63, 19, 45, 1, 58, 27, 39, 1, 63, 1, 40, 49, 64, 19, 51, 1, 66
Offset: 1
Keywords
Examples
a(12)=10 because the increasingly ordered divisors of 12 are 1,2,3,4,6 and 12, with partial sums 1,3,6,10,16 and 28; the largest partial sum not exceeding 12 is 10.
Links
Programs
-
Maple
with(numtheory): a:=proc(n) local div,j: if n=1 then 1 else div:=divisors(n): for j from 1 by 1 while sum(div[i],i=1..j)<=n do sum(div[k],k=1..j) od: fi: end: seq(a(n),n=1..90); # Emeric Deutsch, Apr 01 2006
-
Mathematica
Table[Last@ TakeWhile[Accumulate@ Divisors@ n, # <= n &], {n, 80}] (* Michael De Vlieger, Oct 30 2017 *)
-
PARI
A117552(n) = { my(divs=divisors(n), s=0); for(i=1,#divs,if((s+divs[i])>n,return(s),s+=divs[i])); s; }; \\ Antti Karttunen, Oct 30 2017
Formula
a(n) = n - A109883(n). - Ridouane Oudra, Jan 25 2024
Extensions
More terms from Emeric Deutsch, Apr 01 2006