A117567 Riordan array ((1+x^2)/(1-x^3),x).
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 ---+-------------------------------- 0 | 1, 1 | 0, 1, 2 | 1, 0, 1, 3 | 1, 1, 0, 1, 4 | 0, 1, 1, 0, 1, 5 | 1, 0, 1, 1, 0, 1, 6 | 1, 1, 0, 1, 1, 0, 1, 7 | 0, 1, 1, 0, 1, 1, 0, 1, 8 | 1, 0, 1, 1, 0, 1, 1, 0, 1, 9 | 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 etc. Row and column numbering added by _Antti Karttunen_, Jan 19 2025
References
- Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..101474; the first 450 rows of the triangle
- D. Panario, M. Sahin, Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.
- Index entries for characteristic functions.
Programs
-
PARI
up_to = 119; A117567tr0(n,k) = abs(kronecker((n-k+2), 3)); \\ We could also use fibonacci instead of abs A117567list(up_to) = { my(v = vector(1+up_to), i=0); for(n=0,oo, for(k=0,n, i++; if(i > 1+up_to, return(v)); v[i] = A117567tr0(n,k))); (v); }; v117567 = A117567list(up_to); A117567(n) = v117567[1+n]; \\ Antti Karttunen, Jan 19 2025
Formula
Number triangle T(n,k) = F(L((n-k+2)/3))[k<=n] where L(j/p) is the Legendre symbol of j and p.
In the above, I assume that F stands for Fibonacci sequence (A000045), which in domain {-1, 0, 1} reduces to taking the absolute value of the argument. - Antti Karttunen, Jan 19 2025
Extensions
Data section extended up to a(119) [15 rows of triangle] by Antti Karttunen, Jan 19 2025
Comments