cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117580 A cubic quadratic sequence arranged so that the modulo-3 equals one cubic sequence is just ahead of the quadratic sequence (called here the Maestro sequence).

Original entry on oeis.org

1, 9, 25, 27, 49, 81, 125, 169, 225, 343, 361, 441, 729, 729, 841, 1331, 1369, 1521, 2197, 2025
Offset: 0

Views

Author

Roger L. Bagula, Apr 08 2006

Keywords

Comments

Arranged so that they are near the Magic numbers (nuclear shell filling numbers): called Maestro as they have to be conducted like an orcestra to get them to behave this way.

Crossrefs

Cf. A018226.

Programs

  • Mathematica
    g[n_] := (n - Floor[n/3])^3 /; Mod[n, 3] - 1 == 0 g[n_] := (2*n - 1)^2 /; (n < 4) g[n_] := (2*n - 1)^2 /; (n > 13) && (n < 17) g[n_] := (2*n - 3)^2 /; (n > 4) && (n < 13) g[n_] := (2*n + 3)^2 /; (n >= 17) && (n < 19) g[n_] := (2*n + 5)^2 /; (n >= 18) a=Table[g[n], {n, 1, 20}]

Formula

g[n_] := (n - Floor[n/3])^3 /; Mod[n, 3] - 1 == 0 g[n_] := (2*n - 1)^2 /; (n < 4) g[n_] := (2*n - 1)^2 /; (n > 13) && (n < 17) g[n_] := (2*n - 3)^2 /; (n > 4) && (n < 13) g[n_] := (2*n + 3)^2 /; (n >= 17) && (n < 19) g[n_] := (2*n + 5)^2 /; (n >= 18) a(n) = g[n]