cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117585 a(n) = 2*a(n-1) + a(n-2) + n.

Original entry on oeis.org

1, 3, 9, 24, 61, 151, 369, 896, 2169, 5243, 12665, 30584, 73845, 178287, 430433, 1039168, 2508785, 6056755, 14622313, 35301400, 85225133, 205751687, 496728529, 1199208768, 2895146089, 6989500971, 16874148057, 40737797112, 98349742309
Offset: 0

Views

Author

Gary W. Adamson, Mar 29 2006

Keywords

Comments

A modified Pellian sequence.

Examples

			a(4) = 61 = 2*(a(3)) + a(2) + 4 = 2*24 + 9 + 4.
a(4) = 61 = sum of terms in row 5 of A117584: 1 + 5 + 9 + 17 + 29.
		

Crossrefs

Row sums of triangle A117584.

Programs

  • Magma
    P:= func< n | Round( ((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2)) ) >;
    [(1/2)*(P(n+2) + 2*P(n+1) - (n+2)): n in [0..30]]; // G. C. Greubel, Jul 05 2021
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==3, a[n]==2a[n-1]+a[n-2]+n}, a, {n,30}] (* or *) LinearRecurrence[{4,-4,0,1}, {1,3,9,24}, 30] (* Harvey P. Dale, Mar 11 2015 *)
  • Sage
    def a(n): return (1/2)*(lucas_number1(n+2,2,-1) + 2*lucas_number1(n+1,2,-1) -n-2)
    [a(n) for n in (0..30)] # G. C. Greubel, Jul 05 2021

Formula

a(n)/a(n-1) tends to 1 + sqrt(2) = 2.414213562...(a(14)/a(13) = 430433/178287 = 2.4142702...).
a(n) = (1/2)*(Pell(n+2) + 2*Pell(n+1) - n - 2), with Pell(n) = A000129(n). - Ralf Stephan, May 15 2007
From R. J. Mathar, Aug 05 2009: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4).
G.f.: (1-x+x^2)/((1-2*x-x^2)*(1-x)^2). (End)

Extensions

Terms from a(20) on corrected by R. J. Mathar, Aug 05 2009