cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117609 Number of lattice points inside the ball x^2 + y^2 + z^2 <= n.

Original entry on oeis.org

1, 7, 19, 27, 33, 57, 81, 81, 93, 123, 147, 171, 179, 203, 251, 251, 257, 305, 341, 365, 389, 437, 461, 461, 485, 515, 587, 619, 619, 691, 739, 739, 751, 799, 847, 895, 925, 949, 1021, 1021, 1045, 1141, 1189, 1213, 1237, 1309, 1357, 1357, 1365, 1419, 1503
Offset: 0

Views

Author

John L. Drost, Apr 06 2006

Keywords

Examples

			a(2) = 1 + 6 + 12 = 19, since (0,0,0) and (0, 0, +-1) and cyclic permutations (for a total of 6 points), and +-(0, 1, +-1) and cyclic permutations (for a total 12 points) are inside or on x^2 + y^2 + z^2 = 2.
		

Crossrefs

Partial sums of A005875.
Cf. A000605 (number of points of norm <= n in cubic lattice).
Cf. A210639, A000092 and references therein.
Cf. A057655.

Programs

  • Mathematica
    Table[Sum[SquaresR[3,k], {k,0,n}], {n,0,50}] (* T. D. Noe, Apr 08 2006, revised Sep 27 2011 *)
  • PARI
    A117609(n)=sum(x=0,sqrtint(n),(sum(y=1,sqrtint(t=n-x^2),1+2*sqrtint(t-y^2))*2+sqrtint(t)*2+1)*2^(x>0)) \\ M. F. Hasler, Mar 26 2012
    
  • PARI
    q='q+O('q^66); Vec((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^3/(1-q)) /* Joerg Arndt, Apr 08 2013 */
    
  • Python
    # uses Python code for A057655
    from math import isqrt
    def A117609(n): return A057655(n)+(sum(A057655(n-k**2) for k in range(1,isqrt(n)+1))<<1) # Chai Wah Wu, Jun 23 2024

Formula

a(n) ~ (4/3)*Pi*n^(3/2) ~ A210639(n).
a(n) = A122510(3,n). - R. J. Mathar, Apr 21 2010
G.f.: T3(q)^3/(1-q) where T3(q) = 1 + 2*Sum_{k>=1} q^(k^2). - Joerg Arndt, Apr 08 2013
a(n^2) = A000605(n). - R. J. Mathar, Aug 03 2025