A117673 a(n) is the least k such that k*2*prime(n) + 1 is prime.
1, 1, 1, 2, 1, 2, 3, 5, 1, 1, 5, 2, 1, 2, 3, 1, 6, 3, 2, 4, 2, 2, 1, 1, 2, 3, 3, 3, 5, 1, 2, 1, 3, 2, 4, 3, 5, 2, 7, 1, 1, 3, 1, 2, 9, 2, 5, 6, 12, 6, 1, 1, 3, 1, 3, 3, 4, 3, 2, 1, 3, 1, 2, 3, 3, 13, 3, 5, 3, 5, 7, 1, 3, 2, 6, 6, 12, 3, 4, 2, 1, 5, 1, 2, 5, 1, 4, 15, 3, 6, 3, 4, 2, 1, 2, 3, 1, 16, 5, 9
Offset: 1
Keywords
Examples
a(8)=5 because 2*prime(8)=38 and 5*38 + 1 is prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[k := 1; While[ ! PrimeQ[2*k*Prime[n] + 1], k++ ]; k, {n, 1, 120}] (* Stefan Steinerberger, May 01 2006 *)
-
PARI
a(n) = {my(p=prime(n), k=1); while (!isprime(2*k*p+1), k++); k;} \\ Michel Marcus, Feb 12 2018
Comments