cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117684 Row sums of A117683.

Original entry on oeis.org

1, 2, 3, 13, 11, 49, 27, 141, 523, 3081, 923, 5509, 1371, 7617, 24391, 84933, 14795, 110329, 20859, 142101, 499843, 1858209, 241211, 2312077, 8417451, 70482153, 251680159, 935093181, 95916299, 1102272481, 131510523, 1270525629, 4572551611, 17189356473
Offset: 1

Views

Author

Roger L. Bagula, Apr 12 2006

Keywords

Crossrefs

Cf. A117683.

Programs

  • Magma
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >;
    [(&+[Binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n], 1, n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    T[n_, k_]:= T[n, k]= cf[n]/(cf[k]*cf[n-k]);
    a[n_]:= a[n]= Sum[T[n,k], {k,n}];
    Table[a[n], {n,40}]
  • SageMath
    @CachedFunction
    def A034386(n): return product(nth_prime(j) for j in range(1, 1+prime_pi(n)))
    def A117684(n): return sum(binomial(n,k)*A034386(k)*A034386(n-k)/A034386(n) for k in range(1,n+1))
    [A117684(n) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = Sum_{k=1..n} A117683(n,k).

Extensions

Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010