A117693 Row sums of A117692.
1, 6, 42, 27, 480, 265, 7070, 3815, 1820, 1449, 107338, 56903, 4636632, 2635061, 993850, 633919, 71014372, 42899857, 8111619802, 4675943415, 1414861448, 819657397, 113827776894, 75106291091, 41292848428
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1, n)) >; A117692:= func< n,k | A034386(n)^2/(A034386(k)*A034386(n-k)) >; [(&+[A117692(n,k): k in [1..n]]): n in [1..40]]; // G. C. Greubel, Jul 23 2023
-
Mathematica
f[n_]:= If[PrimeQ[n], n, 1]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A034386 *) T[n_, k_]:= T[n,k]= cf[n]^2/(cf[k]*cf[n-k]); a[n_]:= a[n]= Sum[T[n,k], {k,n}]; Table[a[n], {n,30}]
-
SageMath
def A034386(n): return sloane.A002110(prime_pi(n)) def A117692(n,k): return A034386(n)^2/(A034386(k)*A034386(n-k)) def A117693(n): return sum(A117692(n,k) for k in range(1,n+1)) [A117693(n) for n in range(1,41)] # G. C. Greubel, Jul 23 2023
Formula
a(n) = Sum_{k=1..n} A117692(n, k).
Extensions
Description simplified, offset corrected by the Assoc. Eds. of the OEIS, Jun 27 2010
Comments