A029971 Palindromic primes in base 3.
2, 13, 23, 151, 173, 233, 757, 937, 1093, 1249, 1429, 1487, 1667, 1733, 1823, 1913, 1979, 2069, 8389, 9103, 10111, 12301, 14951, 16673, 16871, 18593, 60103, 60913, 61507, 63127, 69697, 73243, 78979, 80599, 82003, 82813, 83407, 85027
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..3004
- P. De Geest, World!Of Palindromic Primes
Programs
-
Maple
N:= 14: # to get all terms < 3^N Res:= 2: digrev:=proc(n) local L; L:= convert(n,base,3); add(L[-i]*3^(i-1),i=1..nops(L)) end proc; for d from 2 to N do if d::even then m:= d/2; Res:= Res, op(select(isprime,[seq](n*3^m + digrev(n), n=3^(m-1)..3^m-1))); else m:= (d-1)/2; Res:= Res, op(select(isprime,[seq](seq(n*3^(m+1)+y*3^m+digrev(n), y=0..2), n=3^(m-1)..3^m-1))); fi od: Res; # Robert Israel, Aug 19 2015
-
Mathematica
Do[s = RealDigits[n, 3][[1]]; If[PrimeQ[n], If[FromDigits[s] == FromDigits[Reverse[s]], Print[n]]], {n, 1, 8500}] Select[Prime[Range[8300]], Reverse[x = IntegerDigits[#, 3]] == x &] (* Jayanta Basu, Jun 23 2013 *)
-
PARI
lista(nn) = forprime(p=2, nn, if ((d=digits(p,3)) && (Vecrev(d)==d), print1(p, ", "))); \\ Michel Marcus, Aug 19 2015
Comments