cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117727 Partial sums of A051109.

Original entry on oeis.org

1, 3, 8, 18, 38, 88, 188, 388, 888, 1888, 3888, 8888, 18888, 38888, 88888, 188888, 388888, 888888, 1888888, 3888888, 8888888, 18888888, 38888888, 88888888, 188888888, 388888888, 888888888, 1888888888, 3888888888, 8888888888
Offset: 0

Views

Author

N. J. A. Sloane, Apr 14 2006

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,8,18]; [n le 4 select I[n] else Self(n-1) +10*Self(n-3) -10*Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 23 2023
    
  • Mathematica
    LinearRecurrence[{1,0,10,-10}, {1,3,8,18}, 41] (* G. C. Greubel, Jul 23 2023 *)
  • SageMath
    [sum((1 + (j%3)^2)*10^(j//3) for j in range(n+1)) for n in range(41)] # G. C. Greubel, Jul 23 2023

Formula

a(n) = Sum_{j=0..n} A051109(j).
From G. C. Greubel, Jul 23 2023: (Start)
a(n) = (1/9)*( -8 + 17*b(n) + 35*b(n-1) + 80*b(n-2) ), where b(n) = 10^floor(n/3)*floor((n-1 mod 3)/2).
a(n) = a(n-1) + 10*a(n-3) - 10*a(n-4).
G.f.: (1 + 2*x + 5*x^2)/((1 - x)*(1 - 10*x^3)). (End)

A123350 a(n) = (n^4 + 2n^3 + 5n^2 + 4)/4.

Original entry on oeis.org

1, 3, 14, 46, 117, 251, 478, 834, 1361, 2107, 3126, 4478, 6229, 8451, 11222, 14626, 18753, 23699, 29566, 36462, 44501, 53803, 64494, 76706, 90577, 106251, 123878, 143614, 165621, 190067, 217126, 246978, 279809, 315811, 355182, 398126, 444853
Offset: 0

Views

Author

N. J. A. Sloane, Oct 10 2006

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Oct 16 2006
Form the 2 X 3 matrix with first row C(n,0), C(n,1), and C(n,2) and second row C(n+1,0), C(n+1,1), and C(n+1,2), multiply it by its transpose to get a 2 X 2 matrix: its determinant = a(n). - J. M. Bergot, Sep 05 2013

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).

Programs

  • Magma
    [(n^4 + 2*n^3 + 5*n^2 + 4)/4: n in [0..30]]; // G. C. Greubel, Oct 12 2017
  • Maple
    a:=n->(n^4+2*n^3+5*n^2+4)/4: seq(a(n),n=0..40); # Emeric Deutsch, Oct 16 2006
  • Mathematica
    Table[(n^4 + 2*n^3 + 5*n^2 + 4)/4, {n,0,50}] (* G. C. Greubel, Oct 12 2017 *)
  • PARI
    for(n=0,50, print1((n^4 + 2*n^3 + 5*n^2 + 4)/4, ", ")) \\ G. C. Greubel, Oct 12 2017
    

Formula

G.f.: (-1 + 2*x - 9*x^2 + 4*x^3 - 2*x^4) / (x-1)^5 . - R. J. Mathar, Oct 19 2012
a(n) = 1 + A117717(n+1). - R. J. Mathar, Sep 15 2013
E.g.f.: (x^4 + 8*x^3 + 18*x^2 + 8*x + 4)*exp(x)/4. - G. C. Greubel, Oct 12 2017

Extensions

More terms from Emeric Deutsch, Oct 16 2006
Showing 1-2 of 2 results.