cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117727 Partial sums of A051109.

Original entry on oeis.org

1, 3, 8, 18, 38, 88, 188, 388, 888, 1888, 3888, 8888, 18888, 38888, 88888, 188888, 388888, 888888, 1888888, 3888888, 8888888, 18888888, 38888888, 88888888, 188888888, 388888888, 888888888, 1888888888, 3888888888, 8888888888
Offset: 0

Views

Author

N. J. A. Sloane, Apr 14 2006

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,3,8,18]; [n le 4 select I[n] else Self(n-1) +10*Self(n-3) -10*Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 23 2023
    
  • Mathematica
    LinearRecurrence[{1,0,10,-10}, {1,3,8,18}, 41] (* G. C. Greubel, Jul 23 2023 *)
  • SageMath
    [sum((1 + (j%3)^2)*10^(j//3) for j in range(n+1)) for n in range(41)] # G. C. Greubel, Jul 23 2023

Formula

a(n) = Sum_{j=0..n} A051109(j).
From G. C. Greubel, Jul 23 2023: (Start)
a(n) = (1/9)*( -8 + 17*b(n) + 35*b(n-1) + 80*b(n-2) ), where b(n) = 10^floor(n/3)*floor((n-1 mod 3)/2).
a(n) = a(n-1) + 10*a(n-3) - 10*a(n-4).
G.f.: (1 + 2*x + 5*x^2)/((1 - x)*(1 - 10*x^3)). (End)