A117747 Number of different configurations of cycles (loops) in graphs containing directed and undirected links.
7, 15, 30, 74, 171, 444, 1138, 3048, 8175, 22427, 61686, 171630, 479411, 1347609, 3801522, 10768832, 30595671, 87190791, 249085662, 713268978, 2046679419, 5884137206, 16946037930, 48882597264, 141215566135, 408515830803, 1183284759846, 3431523892390
Offset: 3
Keywords
Examples
a(3) = 1/6 *(3^3+3^1+3^1) + 3^(2/2) / 2 = 7. a(4) = 1/8 * (3^4+3^1+3^2+3^1) + 3^(4/2) / 3 = 15. The 7 cycles of length 3 are: --> 0 --> 0 --> 0, --> 0 <-- 0 --> 0, -0 --> 0 --> 0, -0 --> 0 <-- 0, -0 <-- 0 --> 0, -0-0 --> 0, -0-0-0.
References
- Ma'ayan, A., Jenkins, S. L., Neves, S., Hasseldine, A., Grace, E., Dubin-Thaler, B., Eungdamrong, N. J., Weng, G., Ram, P. T., Rice, J. J., Kershenbaum, A., Stolovitzky, G. A., Blitzer, R. D. and Iyengar, R., Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 2005 Aug 12;309
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..500
- Avi Ma'ayan, C program to produce sequence
- Eric Weisstein's World of Mathematics, Helm Graph.
- Eric Weisstein's World of Mathematics, Planar Embedding.
- Eric Weisstein's World of Mathematics, Web Graph.
Crossrefs
Cf. A000011.
Programs
-
PARI
a(n)={if(n%2, 3^((n-1)/2)/2, 3^(n/2-1)) + sum(k=0, k=n-1, 3^gcd(n,k))/(2*n)} \\ Andrew Howroyd, Nov 07 2019
Formula
a(n) = 3^(n/2)/3 + (1/(2*n))*Sum_{k=0..n-1} 3^gcd(n,k) if n is even;
a(n) = 3^((n-1)/2)/2 + (1/(2*n))*Sum_{k=0..n-1} 3^gcd(n,k) if n is odd.
a(n) ~ 3^n / (2*n).
Extensions
Terms a(16) and beyond from Andrew Howroyd, Nov 07 2019
Comments