cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117754 Triangle T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, read by rows (see formula for f(n, k)).

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 7, 7, 8, 7, 12, 1, 1, 2, 1, 6, 0, 25, 25, 26, 25, 30, 144, 48, 211, 211, 212, 211, 216, 330, 234, 420, 1, 1, 2, 1, 6, 120, 24, 210, 0, 1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456, 211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420
Offset: 0

Views

Author

Roger L. Bagula, Apr 14 2006

Keywords

Examples

			Triangle begins as:
     0;
     0,    0;
     1,    1,    0;
     2,    2,    3,    2;
     7,    7,    8,    7,   12;
     1,    1,    2,    1,    6,    0;
    25,   25,   26,   25,   30,  144,   48;
   211,  211,  212,  211,  216,  330,  234,  420;
     1,    1,    2,    1,    6,  120,   24,  210,     0;
  1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456;
   211,  211,  212,  211,  216,  330,  234,  420, 40530, 1938, 420;
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >;
    function f(n,k)
      if k eq 1 then return A049614(n);
      elif k eq 2 then return A034386(n);
      else return Factorial(n);
      end if;
    end function;
    A117754:= func< n,k | Floor(f(n, 1+(n mod 3))+f( k, 1+(k mod 3))) mod
     Factorial(n) >;
    [A117754(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    f[n_]:= If[PrimeQ[n],1,n];
    cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *)
    g[n_]:= If[PrimeQ[n], n, 1];
    p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]];  (* A034386 *)
    f[n_, 1]=cf[n]; f[n_, 2]=p[n]; f[n_, 3]=n!;
    T[n_, k_]:= Mod[f[n, 1 + Mod[n, 3]] + f[k, 1 + Mod[k, 3]], n!];
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
  • SageMath
    from sympy import primorial
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    def A034386(n): return 1 if n == 0 else primorial(n, nth=False)
    def f(n,m):
        if m==1: return A049614(n)
        elif m==2: return A034386(n)
        else: return factorial(n)
    def A117754(n, k): return (f(n, 1+(n%3))+f(k, 1+(k%3)))%factorial(n)
    flatten([[A117754(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023

Formula

T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, where f(n, 1) = A049614(n), f(n, 2) = A034386(n), and f(n, 3) = n!.

Extensions

Edited by G. C. Greubel, Jul 21 2023