A117754 Triangle T(n, k) = (f(n, 1 + (n mod 3)) + f(k, 1 + (k mod 3))) mod n!, read by rows (see formula for f(n, k)).
0, 0, 0, 1, 1, 0, 2, 2, 3, 2, 7, 7, 8, 7, 12, 1, 1, 2, 1, 6, 0, 25, 25, 26, 25, 30, 144, 48, 211, 211, 212, 211, 216, 330, 234, 420, 1, 1, 2, 1, 6, 120, 24, 210, 0, 1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456, 211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420
Offset: 0
Examples
Triangle begins as: 0; 0, 0; 1, 1, 0; 2, 2, 3, 2; 7, 7, 8, 7, 12; 1, 1, 2, 1, 6, 0; 25, 25, 26, 25, 30, 144, 48; 211, 211, 212, 211, 216, 330, 234, 420; 1, 1, 2, 1, 6, 120, 24, 210, 0; 1729, 1729, 1730, 1729, 1734, 1848, 1752, 1938, 42048, 3456; 211, 211, 212, 211, 216, 330, 234, 420, 40530, 1938, 420;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >; A034386:= func< n | n eq 0 select 1 else LCM(PrimesInInterval(1,n)) >; function f(n,k) if k eq 1 then return A049614(n); elif k eq 2 then return A034386(n); else return Factorial(n); end if; end function; A117754:= func< n,k | Floor(f(n, 1+(n mod 3))+f( k, 1+(k mod 3))) mod Factorial(n) >; [A117754(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2023
-
Mathematica
f[n_]:= If[PrimeQ[n],1,n]; cf[n_]:= cf[n]= If[n==0, 1, f[n]*cf[n-1]]; (* A049614 *) g[n_]:= If[PrimeQ[n], n, 1]; p[n_]:= p[n]= If[n==0, 1, g[n]*p[n-1]]; (* A034386 *) f[n_, 1]=cf[n]; f[n_, 2]=p[n]; f[n_, 3]=n!; T[n_, k_]:= Mod[f[n, 1 + Mod[n, 3]] + f[k, 1 + Mod[k, 3]], n!]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
SageMath
from sympy import primorial def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n))) def A034386(n): return 1 if n == 0 else primorial(n, nth=False) def f(n,m): if m==1: return A049614(n) elif m==2: return A034386(n) else: return factorial(n) def A117754(n, k): return (f(n, 1+(n%3))+f(k, 1+(k%3)))%factorial(n) flatten([[A117754(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 21 2023
Formula
Extensions
Edited by G. C. Greubel, Jul 21 2023