cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117813 Consider 1-D random walk with jumps up to the third neighbor, i.e., set of possible jumps is {-3,-2,-1,+1,+2,+3}. Sequence gives number of paths of length n ending at origin.

Original entry on oeis.org

1, 0, 6, 18, 122, 600, 3450, 18914, 107338, 606816, 3466356, 19852470, 114239642, 659275760, 3815952426, 22138925718, 128718762250, 749773729952, 4374616990332, 25561798008252, 149562047056572, 876140945014640, 5138089929141890, 30162194533001982
Offset: 0

Views

Author

Sergey Perepechko, Apr 30 2006

Keywords

Crossrefs

Cf. A092765.

Programs

  • Maple
    a:=array(0..25,[1,0,6,18,122,600,3450]): for n from 0 to 18 do a[n + 7]:=(36864*(n + 1)*(n + 2)*(n + 3)*a[n] - 3072*(n + 2)*(n + 3)*(97*n + 142)*a[n + 1] - 64*(n + 3)*(4031*n^2 + 17601*n + 19504)*a[n + 2] - (26944*n^3 + 215856*n^2 + 498848*n + 243840)*a[n + 3] + (15912*n^3 + 173328*n^2 + 687072*n + 997512)*a[n + 4] + (1868*n^3 + 28044*n^2 + 143368*n + 249960)*a[n + 5] - 2*(n + 6)*(115*n^2 + 1080*n + 2273)*a[n + 6])/(3*(n + 7)*(3*n + 19)*(3*n + 20)) od;
    a:=n->add(add(binomial(n,m)*binomial(n,2*n-4*m+2*k)*binomial(2*n-4*m+2*k,k),m=ceil((n+2*k)/4)..floor((n+k)/2)),k=0..n);
  • Mathematica
    f[n_] := Sum[ Binomial[n, m] Binomial[n, 2 n - 4 m + 2 k] Binomial[2 n - 4 m + 2 k, k], {k, 0, n}, {m, Ceiling[(n + 2 k)/4], Floor[(n + k)/2]}]; Array[f, 21, -1]

Formula

Recurrence: 36864*(n + 1)*(n + 2)*(n + 3)*a(n) - 3072*(n + 2)*(n + 3)*(97*n + 142)*a(n + 1) - 64*(n + 3)*(4031*n^2 + 17601*n + 19504)*a(n + 2) - (26944*n^3 + 215856*n^2 + 498848*n + 243840)*a(n + 3) + (15912*n^3 + 173328*n^2 + 687072*n + 997512)*a(n + 4) + (1868*n^3 + 28044*n^2 + 143368*n + 249960)*a(n + 5) - 2*(n + 6)*(115*n^2 + 1080*n + 2273)*a(n + 6) - 3*(n + 7)*(3*n + 19)*(3*n + 20)*a(n + 7) = 0.
O.d.e. for g.f.: x^2*(6*x - 1)^2*(8*x + 1)^2*(2*x + 1)*(8*x^2 - 68*x - 27)*(d^3/dx^3)G(x) + 6*x*(6*x - 1)*(8*x + 1)*(1152*x^5 - 6640*x^4 - 4164*x^3 - 500*x^2 - 3*x + 9)*(d^2/dx^2)G(x) + 6*(110592*x^7 - 390144*x^6 - 122048*x^5 + 11416*x^4 + 10420*x^3 + 820*x^2 + 84*x - 1)*(d/dx)G(x) + 24*x*(9216*x^5 - 11520*x^4 - 1136*x^3 + 1562*x^2 + 171*x + 30)*G(x) = 0.
Algebraic equation for generating function: (16x^2+8x-1)^2+4(6x-1)(2x+1)(1216x^4+832x^3+4x^2-46x+7)G(x)^2+2(6x-1)^2(2x+1)^2(9120x^4+3744x^3-1264x^2-212x+135)G(x)^4+4(6x-1)^3(2x+1)^3(68x^2+10x-9)(8x^2-68x-27)G(x)^6+(6x-1)^4(2x+1)^4(8x^2-68x-27)^2G(x)^8=0. - Sergey Perepechko, Mar 31 2010