A117878 Triangle T(n,k) = A034386(n)*A049614(k) - 1 read by rows.
0, 1, 1, 5, 5, 5, 5, 5, 5, 23, 29, 29, 29, 119, 119, 29, 29, 29, 119, 119, 719, 209, 209, 209, 839, 839, 5039, 5039, 209, 209, 209, 839, 839, 5039, 5039, 40319, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879
Offset: 1
Examples
The triangle starts in row n=1 as: 0; 1, 1; 5, 5, 5; 5, 5, 5, 23; 29, 29, 29, 119, 119; 29, 29, 29, 119, 119, 719; 209, 209, 209, 839, 839, 5039, 5039; 209, 209, 209, 839, 839, 5039, 5039, 40319; 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879; 209, 209, 209, 839, 839, 5039, 5039, 40319, 362879, 3628799;
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Mathematica
A034386[n_]:= Product[Prime[i], {i, PrimePi[n]}]; A049614[n_]:= n!/A034386[n]; Table[A034386[n]*A049614[k] - 1, {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 06 2021 *)
-
Sage
def A034386(n): return product( nth_prime(j) for j in (1..prime_pi(n)) ) def A117878(n, k): return factorial(k)*A034386(n)/A034386(k) - 1 flatten([[A117878(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 06 2021
Formula
Extensions
Index in definition and offset corrected by Assoc. Eds. of the OEIS - Jun 15 2010