A117895 Triangle T(n, k) = (k-n)*A000129(k+1) + (3*n-3*k+1)*A000129(k) with T(n,0) = 1, for 0 <= k <= n-1, read by rows.
1, 1, 2, 1, 3, 3, 1, 4, 4, 8, 1, 5, 5, 11, 19, 1, 6, 6, 14, 26, 46, 1, 7, 7, 17, 33, 63, 111, 1, 8, 8, 20, 40, 80, 152, 268, 1, 9, 9, 23, 47, 97, 193, 367, 647, 1, 10, 10, 26, 54, 114, 234, 466, 886, 1562, 1, 11, 11, 29, 61, 131, 275, 565, 1125, 2139, 3771, 1, 12, 12, 32, 68, 148, 316, 664, 1364, 2716, 5164, 9104
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 2; 1, 3, 3; 1, 4, 4, 8; 1, 5, 5, 11, 19; 1, 6, 6, 14, 26, 46; 1, 7, 7, 17, 33, 63, 111; 1, 8, 8, 20, 40, 80, 152, 268; ... Row 4, (1, 4, 4, 8) is produced by adding (0, 1, 1, 3) to row 4 of A117894: (1, 3, 3, 5).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
Pell:= func< n | Round(((1+Sqrt(2))^n - (1-Sqrt(2))^n)/(2*Sqrt(2))) >; [k eq 0 select 1 else (k-n)*Pell(k+1) + (3*n-3*k+1)*Pell(k): k in [0..n-1], n in [0..12]]; // G. C. Greubel, Sep 27 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, (k-n)*Fibonacci[k+1, 2] + (3*n-3*k +1)*Fibonacci[k, 2]]; Table[T[n, k], {n,0,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
-
Sage
def P(n): return lucas_number1(n, 2, -1) def A117895(n,k): return 1 if (k==0) else (k-n)*P(k+1) + (3*n-3*k+1)*P(k) flatten([[A117895(n,k) for k in (0..n-1)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
Formula
Delete right border of triangle A117894. Alternatively, let row 1 = 1 and using the heading 0, 1, 1, 3, 7, 17, 41, 99, 239...(i.e. A001333 starting with 0, 1, 1, 3...); add the first n terms of the heading to n-th row of triangle A117894.
From G. C. Greubel, Sep 27 2021: (Start)
T(n, 1) = n+1 for n >= 1.
T(n, 2) = n+1 for n >= 2.
T(n, n) = 2*[n=0] + A078343(n). (End)
Extensions
New name and more terms added by G. C. Greubel, Sep 27 2021
Comments