A117897 Number of labeled trees on prime numbers of nodes through n-th prime.
1, 4, 129, 16936, 2357964627, 1794518358664, 2862424846028174457, 5483249282630830360396, 39471589603944768518079950019, 3053134546009996125349281528007992109928
Offset: 1
Examples
a(1) = number of labeled trees on prime(1) numbers of nodes = number of labeled trees on 2 nodes = A000272(2) = 2^0 = 1. a(2) = number of labeled trees on prime(1) or prime(2) numbers of nodes = number of labeled trees on 2 or 3 nodes = A000272(2)+A000272(3) = 2^0 + 3^1 = 4. a(3) = number of labeled trees on prime(1) or prime(2) or prime(3) numbers of nodes = number of labeled trees on 2 or 3 or 5 nodes = A000272(2)+A000272(3)+A000272(5) = 2^0 + 3^1 + 5^3 = 129.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..75
Programs
-
Mathematica
Table[Sum[Prime[k]^(Prime[k] -2), {k,n}], {n,20}] (* G. C. Greubel, Sep 27 2021 *)
-
Sage
[sum( nth_prime(k)^(nth_prime(k) -2) for k in (1..n)) for n in (1..20)] # G. C. Greubel, Sep 27 2021
Comments