cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117899 Expansion of (1 + 2*x + 5*x^2 + 3*x^3 + 2*x^4)/(1-x^3)^2.

Original entry on oeis.org

1, 2, 5, 5, 6, 10, 9, 10, 15, 13, 14, 20, 17, 18, 25, 21, 22, 30, 25, 26, 35, 29, 30, 40, 33, 34, 45, 37, 38, 50, 41, 42, 55, 45, 46, 60, 49, 50, 65, 53, 54, 70, 57, 58, 75, 61, 62, 80, 65, 66, 85, 69, 70, 90, 73, 74, 95, 77, 78, 100, 81, 82, 105, 85, 86, 110, 89, 90, 115, 93
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums of A117898.

Crossrefs

Cf. A117898.

Programs

  • Magma
    I:=[1,2,5,5,6,10]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..91]]; // G. C. Greubel, Oct 01 2021
    
  • Mathematica
    CoefficientList[Series[(1+2x+5x^2+3x^3+2x^4)/(1-x^3)^2,{x,0,90}],x] (* or *) LinearRecurrence[{0,0,2,0,0,-1},{1,2,5,5,6,10},90] (* Harvey P. Dale, Dec 18 2013 *)
  • Sage
    def A117899_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x+5*x^2+3*x^3+2*x^4)/(1-x^3)^2 ).list()
    A117899_list(90) # G. C. Greubel, Oct 01 2021

Formula

a(n) = 2*a(n-3) - a(n-6).
a(n) = Sum_{k=0..n} 2^abs(L(C(n,2)/3) - L(C(k,2)/3)), L(j/p) the Legendre symbol of j and p.