cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A117898 Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.

Examples

			Triangle begins
  1;
  1, 1;
  2, 2, 1;
  1, 1, 2, 1;
  1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x,0,15}, {y,0,15}], x], y]] (* G. C. Greubel, May 03 2017 *)
    T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
  • Sage
    def T(n, k): return 2^abs(kronecker(binomial(n,2), 3) - kronecker(binomial(k,2), 3))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021

Formula

G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).
Showing 1-1 of 1 results.