cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A117901 Inverse of number triangle A117898.

Original entry on oeis.org

1, -1, 1, 0, -2, 1, 0, 3, -2, 1, 0, 0, 0, -1, 1, 0, -6, 3, 0, -2, 1, 0, 12, -6, 0, 3, -2, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, -24, 12, 0, -6, 3, 0, -2, 1, 0, 48, -24, 0, 12, -6, 0, 3, -2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, -96, 48, 0, -24, 12, 0, -6, 3, 0, -2, 1, 0, 192, -96, 0, 48, -24, 0, 12, -6, 0, 3, -2, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117902. Diagonal sums are A117903.

Examples

			Triangle begins
1,
-1, 1,
0, -2, 1,
0, 3, -2, 1,
0, 0, 0, -1, 1,
0, -6, 3, 0, -2, 1,
0, 12, -6, 0, 3, -2, 1,
0, 0, 0, 0, 0, 0, -1, 1,
0, -24, 12, 0, -6, 3, 0, -2, 1,
0, 48, -24, 0, 12, -6, 0, 3, -2, 1
		

Formula

G.f.:(2x^6*y^2+x^5*y(2-y)+4x^4(1-y)-x^3(2y^2-3y+4)+x^2*y(y-2)+x(y-1)+1)/((1-4x^3)(1-x^3*y^3))

A117904 Number triangle [k<=n]*0^abs(L(C(n,2)/3) - L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A009947(n+2).
Diagonal sums are A117905.
Inverse is A117906.
Equals A117898 mod 2.

Examples

			Triangle begins
  1;
  1, 1;
  0, 0, 1;
  1, 1, 0, 1;
  1, 1, 0, 1, 1;
  0, 0, 1, 0, 0, 1;
  1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 1, 0, 0, 1, 0, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 20 2021 *)
  • Sage
    def A117904(n,k): return 1 if abs(jacobi_symbol(binomial(n,2), 3) - jacobi_symbol(binomial(k,2), 3))==0 else 0
    flatten([[A117904(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Oct 20 2021

Formula

G.f.: (1 +x*(1+y) +x^2*y^2 +x^3*y)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n] * 2^abs(L(C(n,2)/3) - L(C(k,2)/3)) mod 2.

A117899 Expansion of (1 + 2*x + 5*x^2 + 3*x^3 + 2*x^4)/(1-x^3)^2.

Original entry on oeis.org

1, 2, 5, 5, 6, 10, 9, 10, 15, 13, 14, 20, 17, 18, 25, 21, 22, 30, 25, 26, 35, 29, 30, 40, 33, 34, 45, 37, 38, 50, 41, 42, 55, 45, 46, 60, 49, 50, 65, 53, 54, 70, 57, 58, 75, 61, 62, 80, 65, 66, 85, 69, 70, 90, 73, 74, 95, 77, 78, 100, 81, 82, 105, 85, 86, 110, 89, 90, 115, 93
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums of A117898.

Crossrefs

Cf. A117898.

Programs

  • Magma
    I:=[1,2,5,5,6,10]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..91]]; // G. C. Greubel, Oct 01 2021
    
  • Mathematica
    CoefficientList[Series[(1+2x+5x^2+3x^3+2x^4)/(1-x^3)^2,{x,0,90}],x] (* or *) LinearRecurrence[{0,0,2,0,0,-1},{1,2,5,5,6,10},90] (* Harvey P. Dale, Dec 18 2013 *)
  • Sage
    def A117899_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x+5*x^2+3*x^3+2*x^4)/(1-x^3)^2 ).list()
    A117899_list(90) # G. C. Greubel, Oct 01 2021

Formula

a(n) = 2*a(n-3) - a(n-6).
a(n) = Sum_{k=0..n} 2^abs(L(C(n,2)/3) - L(C(k,2)/3)), L(j/p) the Legendre symbol of j and p.

A117900 Expansion of (1 + 2*x + 4*x^2 + 4*x^3 + 2*x^4)/((1+x)*(1-x^3)^2).

Original entry on oeis.org

1, 1, 3, 3, 3, 5, 6, 4, 8, 8, 6, 10, 11, 7, 13, 13, 9, 15, 16, 10, 18, 18, 12, 20, 21, 13, 23, 23, 15, 25, 26, 16, 28, 28, 18, 30, 31, 19, 33, 33, 21, 35, 36, 22, 38, 38, 24, 40, 41, 25, 43, 43, 27, 45, 46, 28, 48, 48, 30, 50, 51, 31, 53, 53, 33, 55, 56, 34, 58, 58, 36
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Diagonal sums of A117898.

Crossrefs

Cf. A117898.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+2*x+4*x^2+4*x^3+2*x^4)/((1+x)*(1-x^3)^2) )); // G. C. Greubel, Oct 01 2021
    
  • Mathematica
    CoefficientList[Series[(1+2x+4x^2+4x^3+2x^4)/((1-x^3)(1+x-x^3-x^4)),{x,0,80}],x] (* or *) LinearRecurrence[{-1,0,2,2,0,-1,-1},{1,1,3,3,3,5,6},80] (* Harvey P. Dale, Mar 06 2018 *)
  • Sage
    def A117899_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x+4*x^2+4*x^3+2*x^4)/((1+x)*(1-x^3)^2) ).list()
    A117899_list(80) # G. C. Greubel, Oct 01 2021

Formula

a(n) = -a(n-1) + 2*a(n-3) + 2*a(n-4) - a(n-6) - a(n-7).
a(n) = Sum_{k=0..floor(n/2)} 2^abs(L(C(n-k,2)/3) - L(C(k,2)/3)), L(j/p) the Legendre symbol of j and p.
Showing 1-4 of 4 results.