A117906
Inverse of number triangle A117904.
Original entry on oeis.org
1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1
Offset: 0
Triangle begins
1;
-1, 1;
0, 0, 1;
0, -1, 0, 1;
0, 0, 0, -1, 1;
0, 0, -1, 0, 0, 1;
0, 0, 0, 0, -1, 0, 1;
0, 0, 0, 0, 0, 0, -1, 1;
0, 0, 0, 0, 0, -1, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, -1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1;
0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1;
-
M[n_, k_]:= M[n, k]= If[k>n, 0, If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]];
m:= m= With[{q=20}, Table[M[n, k], {n,0,q}, {k,0,q}]];
T[n_, k_]:= Inverse[m][[n+1, k+1]];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 20 2021 *)
A117898
Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 2, 1;
1, 1, 2, 1;
1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
-
Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x,0,15}, {y,0,15}], x], y]] (* G. C. Greubel, May 03 2017 *)
T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
-
def T(n, k): return 2^abs(kronecker(binomial(n,2), 3) - kronecker(binomial(k,2), 3))
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021
A117908
Chequered (or checkered) triangle for odd prime p=3.
Original entry on oeis.org
1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0
Triangle begins
1;
1, 1;
0, 0, 0;
1, 1, 0, 1;
1, 1, 0, 1, 1;
0, 0, 0, 0, 0, 0;
1, 1, 0, 1, 1, 0, 1;
1, 1, 0, 1, 1, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
-
A117908:= func< n,k | (n mod 3) lt 2 and (k mod 3) lt 2 select 1 else 0>;
[A117908(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 18 2021
-
T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - 2*JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0];
Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 21 2021 *)
-
def A117908(n, k): return 1 if (n%3<2 and k%3<2) else 0
flatten([[A117908(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 21 2021
A117905
Expansion of (1+2*x+2*x^2)/((1+x)*(1-x^3)^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 2, 4, 2, 2, 6, 2, 3, 7, 3, 3, 9, 3, 4, 10, 4, 4, 12, 4, 5, 13, 5, 5, 15, 5, 6, 16, 6, 6, 18, 6, 7, 19, 7, 7, 21, 7, 8, 22, 8, 8, 24, 8, 9, 25, 9, 9, 27, 9, 10, 28, 10, 10, 30, 10, 11, 31, 11, 11, 33, 11, 12, 34, 12, 12, 36
Offset: 0
-
R:=PowerSeriesRing(Integers(), 75); Coefficients(R!( (1+2*x+2*x^2)/((1+x)*(1-x^3)^2) )); // G. C. Greubel, Oct 18 2021
-
LinearRecurrence[{-1,0,2,2,0,-1,-1}, {1,1,1,1,3,1,2}, 75] (* G. C. Greubel, Oct 10 2021 *)
-
lista(n) = {my(x = 'x + 'x*O('x^n)); P = (1+2*x+2*x^2) / ((1-x^3)*(1+x-x^3-x^4)); Vec(P);} \\ Michel Marcus, Mar 20 2013
-
def A117905_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+2*x+2*x^2)/((1+x)*(1-x^3)^2) ).list()
A117905_list(75) # G. C. Greubel, Oct 18 2021
Showing 1-4 of 4 results.
Comments