cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A117906 Inverse of number triangle A117904.

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are (1, 0, 1, 0, 0, 0, ...) with g.f. 1 + x^2.
Diagonal sums are A117907.

Examples

			Triangle begins
   1;
  -1,  1;
   0,  0,  1;
   0, -1,  0,  1;
   0,  0,  0, -1,  1;
   0,  0, -1,  0,  0,  1;
   0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0, -1,  1;
   0,  0,  0,  0,  0, -1,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1;
   0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1, 1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= M[n, k]= If[k>n, 0, If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]];
    m:= m= With[{q=20}, Table[M[n, k], {n,0,q}, {k,0,q}]];
    T[n_, k_]:= Inverse[m][[n+1, k+1]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 20 2021 *)

Formula

G.f.: (1 -x*(1-y) +x^2*y^2 -x^3*y -x^5*y^2)/(1-x^3*y^3).

A117898 Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.

Examples

			Triangle begins
  1;
  1, 1;
  2, 2, 1;
  1, 1, 2, 1;
  1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x,0,15}, {y,0,15}], x], y]] (* G. C. Greubel, May 03 2017 *)
    T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
  • Sage
    def T(n, k): return 2^abs(kronecker(binomial(n,2), 3) - kronecker(binomial(k,2), 3))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021

Formula

G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).

A117908 Chequered (or checkered) triangle for odd prime p=3.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117909.
Diagonal sums are A117910.
For odd prime p, T(n,k;p) = [k<=n]*0^abs(L(C(n,p-1)/p) - 2*L(C(k,p-1)/p)) defines a checkered triangle for p.

Examples

			Triangle begins
  1;
  1, 1;
  0, 0, 0;
  1, 1, 0, 1;
  1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • Magma
    A117908:= func< n,k | (n mod 3) lt 2 and (k mod 3) lt 2 select 1 else 0>;
    [A117908(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 18 2021
  • Mathematica
    T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - 2*JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 21 2021 *)
  • Sage
    def A117908(n, k): return 1 if (n%3<2 and k%3<2) else 0
    flatten([[A117908(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 21 2021
    

Formula

G.f.: (1 +x*(1+y) +x^3*y)/((1-x^3)*(1-x^3*y^3)).
T(n,k) = [k<=n] * 0^abs(L(C(n,2)/3) - 2*L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.
T(n, k) = 1 if (n mod 3) < 2 and (k mod 3) < 2, otherwise 0. - Kevin Ryde, Oct 21 2021

A117905 Expansion of (1+2*x+2*x^2)/((1+x)*(1-x^3)^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 2, 4, 2, 2, 6, 2, 3, 7, 3, 3, 9, 3, 4, 10, 4, 4, 12, 4, 5, 13, 5, 5, 15, 5, 6, 16, 6, 6, 18, 6, 7, 19, 7, 7, 21, 7, 8, 22, 8, 8, 24, 8, 9, 25, 9, 9, 27, 9, 10, 28, 10, 10, 30, 10, 11, 31, 11, 11, 33, 11, 12, 34, 12, 12, 36
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Diagonal sums of number triangle A117904.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 75); Coefficients(R!( (1+2*x+2*x^2)/((1+x)*(1-x^3)^2) )); // G. C. Greubel, Oct 18 2021
    
  • Mathematica
    LinearRecurrence[{-1,0,2,2,0,-1,-1}, {1,1,1,1,3,1,2}, 75] (* G. C. Greubel, Oct 10 2021 *)
  • PARI
    lista(n) = {my(x = 'x + 'x*O('x^n)); P = (1+2*x+2*x^2) / ((1-x^3)*(1+x-x^3-x^4)); Vec(P);}  \\ Michel Marcus, Mar 20 2013
    
  • Sage
    def A117905_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+2*x+2*x^2)/((1+x)*(1-x^3)^2) ).list()
    A117905_list(75) # G. C. Greubel, Oct 18 2021

Formula

a(n) = -a(n-1) + 2*a(n-3) + 2*a(n-4) - a(n-6) - a(n-7).
a(n) = Sum_{k=0..floor(n/2)} 0^abs(L(C(n-k,2)/3) - L(C(k,2)/3)), where L(j/p) is the Legendre symbol of j and p.
From G. C. Greubel, Oct 18 2021: (Start)
a(n) = (1/36)*(10*n + 23 + (-1)^n*(9 + 16*u(n, 1/2) - 4*u(n-1, 1/2) - 12*Sum_{j=0..n} u(n-j, 1/2)*u(j, 1/2))), where u(n, x) = ChebyshevU(n, x).
a(n) = (1/36)*(39 + 30*n + 9*(-1)^n - 48*floor((n+2)/3) - 12*floor((n+1)/3) - 12*b(n)), where b(n) = binomial(n+3, 3) - 6*A014125(n-1) + 9*A144677(n-2). (End)
Showing 1-4 of 4 results.