A117909 Count, inserting 0 after every even number.
1, 2, 0, 3, 4, 0, 5, 6, 0, 7, 8, 0, 9, 10, 0, 11, 12, 0, 13, 14, 0, 15, 16, 0, 17, 18, 0, 19, 20, 0, 21, 22, 0, 23, 24, 0, 25, 26, 0, 27, 28, 0, 29, 30, 0, 31, 32, 0, 33, 34, 0, 35, 36, 0, 37, 38, 0, 39, 40, 0, 41, 42, 0, 43, 44, 0, 45, 46, 0, 47, 48, 0, 49, 50, 0, 51, 52, 0, 53, 54, 0
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1)
Programs
-
Magma
I:=[1,2,0,3,4,0]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..91]]; // G. C. Greubel, Oct 21 2021
-
Mathematica
Riffle[Range[60],0,3] (* Harvey P. Dale, Sep 12 2013 *)
-
Sage
def a(n): return (2*n+3)/3 if (n%3==0) else 2*(n+2)/3 if (n%3==1) else 0 [a(n) for n in (0..90)] # G. C. Greubel, Oct 21 2021
Formula
G.f.: (1 +2*x +x^3)/(1-x^3)^2.
a(n) = Sum_{k=0..n} 0^abs(L(C(n,2)/3) - 2*L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.
a(n) = sin((n+1)*Pi/3)*((8*n+14)*sin((n+1)*Pi/3) - sqrt(3)*cos(n*Pi))/9. - Wesley Ivan Hurt, Sep 24 2017
Comments