cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A117908 Chequered (or checkered) triangle for odd prime p=3.

Original entry on oeis.org

1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117909.
Diagonal sums are A117910.
For odd prime p, T(n,k;p) = [k<=n]*0^abs(L(C(n,p-1)/p) - 2*L(C(k,p-1)/p)) defines a checkered triangle for p.

Examples

			Triangle begins
  1;
  1, 1;
  0, 0, 0;
  1, 1, 0, 1;
  1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1;
  1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
		

Crossrefs

Programs

  • Magma
    A117908:= func< n,k | (n mod 3) lt 2 and (k mod 3) lt 2 select 1 else 0>;
    [A117908(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Nov 18 2021
  • Mathematica
    T[n_, k_]:= If[Abs[JacobiSymbol[Binomial[n, 2], 3] - 2*JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 21 2021 *)
  • Sage
    def A117908(n, k): return 1 if (n%3<2 and k%3<2) else 0
    flatten([[A117908(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 21 2021
    

Formula

G.f.: (1 +x*(1+y) +x^3*y)/((1-x^3)*(1-x^3*y^3)).
T(n,k) = [k<=n] * 0^abs(L(C(n,2)/3) - 2*L(C(k,2)/3)) where L(j/p) is the Legendre symbol of j and p.
T(n, k) = 1 if (n mod 3) < 2 and (k mod 3) < 2, otherwise 0. - Kevin Ryde, Oct 21 2021
Showing 1-1 of 1 results.