cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117903 Diagonal sums of number triangle A117901.

Original entry on oeis.org

1, -1, 1, -2, 4, -2, -5, 14, -5, -26, 64, -26, -101, 254, -101, -410, 1024, -410, -1637, 4094, -1637, -6554, 16384, -6554, -26213, 65534, -26213, -104858, 262144, -104858, -419429
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2-5*x^3+3*x^4-3*x^5-x^6-2*x^7)/((1-4*x^3)*(1+x+x^2+x^3+x^4+x^5)) )); // G. C. Greubel, Oct 09 2021
    
  • Mathematica
    LinearRecurrence[{-1,-1,3,3,3,4,4,4},{1,-1,1,-2,4,-2,-5,14},40] (* Harvey P. Dale, Oct 04 2021 *)
  • Sage
    def A133851(n): return 4^(n/3) if (n%3==0) else 0
    def A057079(n): return chebyshev_U(n, 1/2) + chebyshev_U(n-1, 1/2)
    def A117903(n): return (1/30)*(28*(-1)^n + (15*(-1)^n - 1)* A057079(n) - 6*(2*A133851(n) - 5*A133851(n-1) + 2*A133851(n-2)))
    [A117903(n) for n in (0..50)] # G. C. Greubel, Oct 09 2021

Formula

G.f.: (1+x^2-5*x^3+3*x^4-3*x^5-x^6-2*x^7)/((1-4*x^3)*(1+x+x^2+x^3+x^4+x^5)).
a(n) = -a(n-1) -a(n-2) +3*a(n-3) +3*a(n-4) +3*a(n-5) +4*a(n-6) +4*a(n-7) +4*a(n-8).
a(n) = (1/30)*(28*(-1)^n + (15*(-1)^n - 1)*A057079(n) - 6*(2*A133851(n) - 5*A133851(n-1) + 2*A133851(n-2))). - G. C. Greubel, Oct 09 2021

A117898 Number triangle 2^abs(L(C(n,2)/3) - L(C(k,2)/3))*[k<=n] where L(j/p) is the Legendre symbol of j and p.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are A117899. Diagonal sums are A117900. Inverse is A117901. A117898 mod 2 is A117904.

Examples

			Triangle begins
  1;
  1, 1;
  2, 2, 1;
  1, 1, 2, 1;
  1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1;
  2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1;
  1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    Flatten[CoefficientList[CoefficientList[Series[(1 +x(1+y) +x^2(2+2y+y^2) +x^3*y(1 +2y) +2x^4*y^2)/((1-x^3)(1-x^3*y^3)), {x,0,15}, {y,0,15}], x], y]] (* G. C. Greubel, May 03 2017 *)
    T[n_, k_]:= 2^Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 27 2021 *)
  • Sage
    def T(n, k): return 2^abs(kronecker(binomial(n,2), 3) - kronecker(binomial(k,2), 3))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 27 2021

Formula

G.f.: (1 +x*(1+y) +x^2*(2+2*y+y^2) +x^3*y(1+2*y) +2*x^4*y^2)/((1-x^3)*(1-x^3*y^3)).
T(n, k) = [k<=n]*2^abs(L(C(n,2)/3) - L(C(k,2)/3)).

A117902 Expansion of (1-x^2-2x^3)/(1-4x^3).

Original entry on oeis.org

1, 0, -1, 2, 0, -4, 8, 0, -16, 32, 0, -64, 128, 0, -256, 512, 0, -1024, 2048, 0, -4096, 8192, 0, -16384, 32768, 0, -65536, 131072, 0, -262144, 524288, 0, -1048576, 2097152, 0, -4194304, 8388608, 0, -16777216, 33554432, 0, -67108864, 134217728, 0, -268435456, 536870912, 0, -1073741824
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums of number triangle A117901.

Crossrefs

Programs

  • Magma
    [1] cat [n le 3 select (-1)^(n-1)*(n-1) else 4*Self(n-3): n in [1..50]]; // G. C. Greubel, Oct 09 2021
    
  • Mathematica
    LinearRecurrence[{0,0,4}, {1,0,-1,2}, 50] (* G. C. Greubel, Oct 09 2021 *)
  • Sage
    def A133851(n): return 4^(n/3) if (n%3==0) else 0
    def A117902(n): return bool(n==0)/2 + 2*A133851(n-3) - A133851(n-2)
    [A117902(n) for n in (0..50)] # G. C. Greubel, Oct 09 2021

Formula

a(n) = 0^n/2 - (2^(2*n/3)/12)*( 2*cos((2*n+1)*Pi*n/3) + 2*sqrt(3)*sin((2*n+1)*Pi*n/3) -(2^(2/3) + 8)*cos(2*Pi*n/3) - 2^(1/6)*sqrt(6)*sin(2*Pi*n/3) + 2^(2/3) - 2 ).
a(n) = (1/2)*[n=0] + 2*A133851(n-3) - A133851(n-2). - G. C. Greubel, Oct 09 2021
Showing 1-3 of 3 results.