cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A117906 Inverse of number triangle A117904.

Original entry on oeis.org

1, -1, 1, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, -1, 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 01 2006

Keywords

Comments

Row sums are (1, 0, 1, 0, 0, 0, ...) with g.f. 1 + x^2.
Diagonal sums are A117907.

Examples

			Triangle begins
   1;
  -1,  1;
   0,  0,  1;
   0, -1,  0,  1;
   0,  0,  0, -1,  1;
   0,  0, -1,  0,  0,  1;
   0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0, -1,  1;
   0,  0,  0,  0,  0, -1,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1;
   0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1, 1;
   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  0, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    M[n_, k_]:= M[n, k]= If[k>n, 0, If[Abs[JacobiSymbol[Binomial[n, 2], 3] - JacobiSymbol[Binomial[k, 2], 3]]==0, 1, 0]];
    m:= m= With[{q=20}, Table[M[n, k], {n,0,q}, {k,0,q}]];
    T[n_, k_]:= Inverse[m][[n+1, k+1]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 20 2021 *)

Formula

G.f.: (1 -x*(1-y) +x^2*y^2 -x^3*y -x^5*y^2)/(1-x^3*y^3).
Showing 1-1 of 1 results.