A117941 Inverse of number triangle A117939.
1, -2, 1, -5, 2, 1, -2, 0, 0, 1, 4, -2, 0, -2, 1, 10, -4, -2, -5, 2, 1, -5, 0, 0, 2, 0, 0, 1, 10, -5, 0, -4, 2, 0, -2, 1, 25, -10, -5, -10, 4, 2, -5, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 10, -4, -2, 0, 0, 0, 0, 0, 0, -5, 2, 1, 4, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 1, -8, 4, 0, 4, -2, 0, 0, 0, 0, 4, -2, 0, -2, 1
Offset: 0
Examples
Triangle begins 1; -2, 1; -5, 2, 1; -2, 0, 0, 1; 4, -2, 0, -2, 1; 10, -4, -2, -5, 2, 1; -5, 0, 0, 2, 0, 0, 1; 10, -5, 0, -4, 2, 0, -2, 1; 25, -10, -5, -10, 4, 2, -5, 2, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 0]; m:= m= With[{q = 60}, Table[M[n, k], {n,0,q}, {k,0,q}]]; T[n_, k_]:= Inverse[m][[n+1, k+1]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
Comments