cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A255822 Number of nonzero terms in A117943 up to index 2^n: a(n) = Sum_{k=1..2^n} A117943(k).

Original entry on oeis.org

0, 1, 1, 3, 5, 9, 19, 41, 84, 163, 311, 615, 1268, 2612, 5228, 10244, 20172, 40496, 82066, 165284, 329388, 654207, 1305709, 2620890, 5262399, 10524162, 20983533, 41878200, 83848212, 168188942, 337036806, 673896773, 1345770393, 2688442850, 5375471835
Offset: 0

Views

Author

M. F. Hasler, Mar 09 2015

Keywords

Comments

The sequence seems to grow roughly as a(n) ~ c*2^n with c = 0.313...

Crossrefs

Programs

  • PARI
    N=1;s=0;for(n=1,9e9,s+=A117943(n);n
    				

Extensions

a(25)-a(34) from Hiroaki Yamanouchi, Mar 10 2015

A126616 a(n) = n for n < 10, a(10*n) = a(n), and if the terms a(10), a(20), a(30), ... are deleted, one gets back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 5, 1, 3, 4, 2, 5, 1, 3, 4, 2, 6, 5, 1, 3, 4, 2, 6, 5, 1, 3, 7, 4, 2, 6, 5, 1, 3, 7, 4, 2, 8, 6, 5, 1, 3, 7, 4, 2, 8, 6, 9, 5, 1, 3, 7, 4, 2, 8, 6, 9, 1, 5, 1, 3, 7, 4
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2007

Keywords

Comments

A self-generating sequence.
Invented by Eric Angelini. Might also be called a lizard sequence (une suite du lézard) because it grows back from its tail.

References

  • J.-P. Delahaye, La suite du lézard et autres inventions, Pour la Science, No. 353, 2007.

Crossrefs

Programs

  • Maple
    A126616 := proc(n) option remember ; if n < 10 then n ; elif n mod 10 = 0 then A126616(n/10) ; else A126616( n-floor(n/10) ) ; fi ; end: seq(A126616(n),n=1..120) ; # R. J. Mathar, Oct 02 2007
  • Mathematica
    a[n_] := Module[{m = 10, k = n, q}, While[k >= m, q = Quotient[k, m]; If[Mod[k, m] != 0, k -= q, k = q]]; k];
    Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 02 2022, after M. F. Hasler *)
  • PARI
    a(n,m=10)=while(n>=m,if(n%m,n-=n\m,n\=m));n \\ M. F. Hasler, Mar 07 2015

Extensions

More terms from R. J. Mathar, Oct 02 2007
Definition rephrased by M. F. Hasler, Mar 09 2015

A255824 a(n) = n for n < 4; a(4n) = a(n); if every 4th term (a(4), a(8), a(12), ...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 1, 2, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 1, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 3, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 3, 3
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

A self-generating sequence. This is the m=4 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=4)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/4) if n == 0 (mod 4); a(n) = a(n - floor(n/4)) otherwise.

A255829 a(n) = n for n < 9; a(9n) = a(n); if every 9th term (a(9), a(18), a(27),...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 2, 4, 5, 3, 1, 2, 4, 5, 3, 1, 2, 6, 4, 5, 3, 1, 2, 6, 4, 5, 7, 3, 1, 2, 6, 4, 5, 7, 3, 8, 1, 2, 6, 4, 5, 7, 3, 8, 1, 1, 2, 6, 4, 5, 7, 3, 8, 1, 1, 1, 2, 6, 4, 5, 7, 3, 1, 8
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

A self-generating sequence. This is the m=9 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=9)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/9) if n==0 (mod 9); a(n) = a(n - floor(n/9)) otherwise.

A178931 This sequence S is generated by the following rules: 2 is in S, and if n is in S, then floor[(3n-1)/2] and 3n are in S.

Original entry on oeis.org

2, 6, 8, 11, 16, 18, 23, 24, 26, 33, 34, 35, 38, 48, 49, 50, 52, 54, 56, 69, 71, 72, 73, 74, 77, 78, 80, 83, 99, 102, 103, 105, 106, 107, 109, 110, 114, 115, 116, 119, 124, 144, 147, 148, 150, 152, 154, 156, 157, 158, 160, 162, 163, 164, 168, 170, 172, 173, 178, 185
Offset: 1

Views

Author

Clark Kimberling, Dec 30 2010

Keywords

Comments

This sequence results from flattening and sorting the tree at A183212. Complement of A183213, obtained from the tree at A183211.
Sequence A117943 is the characteristic sequence of this one. - M. F. Hasler, Mar 07 2015

Crossrefs

Programs

  • Mathematica
    nn=200; t={2}; t0=t; While[t=Select[Union[t,Floor[(3*t-1)/2],3*t], #<=nn &]; t0 != t, t0=t]; t

Formula

(See the Mathematica code.)

A117944 Triangle related to powers of 3 partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Inverse is A117945.
Row sums of inverse are A039966.

Examples

			Triangle begins
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 0, 1;
  0, 0, 0, 1, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  0, 1, 0, 0, 0, 0, 0, 1;
  1, 0, 1, 0, 0, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Mod[Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
  • Sage
    def A117944(n, k): return ( sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n)) )%2
    flatten([[A117944(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021

Formula

Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) mod 2, where L(j/p) is the Legendre symbol of j and p.
T(n, k) = A117939(n,k) mod 2.
T(n, k) = A117939^(-1)(n,k) mod 2.
Sum_{k=0..n} T(n, k) = A117943(n).

A255828 a(n) = n for n < 8; a(8n) = a(n); if every 8th term (a(8), a(16), a(24),...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 5, 4, 1, 3, 2, 5, 4, 1, 6, 3, 2, 5, 4, 1, 6, 3, 7, 2, 5, 4, 1, 6, 3, 7, 1, 2, 5, 4, 1, 6, 3, 7, 1, 1, 2, 5, 4, 1, 6, 3, 1, 7, 1, 1, 2, 5, 4, 1, 1, 6, 3, 1, 7, 1, 1, 2, 1, 5, 4, 1, 1
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

A self-generating sequence. This is the m=8 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=8)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/8) if n==0 (mod 8); a(n) = a(n - floor(n/8)) otherwise.

A255825 A self-generating sequence: a(n) = n for n < 5; a(5n) = a(n); if every 5th term (a(5), a(10), a(15),...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 2, 3, 1, 1, 4
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

This is the m=5 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=5)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/5) if n==0 (mod 5); a(n) = a(n - floor(n/5)) otherwise.

A255826 a(n) = n for n < 6; a(6n) = a(n); if every 6th term (a(6), a(12), a(18),...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 5, 2, 1, 4, 3, 5, 1, 2, 1, 4, 3, 5, 1, 1, 2, 1, 4, 3, 1, 5, 1, 1, 2, 1, 1, 4, 3, 1, 5, 1, 1, 1, 2, 1, 1, 4, 1, 3, 1, 5, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 3, 1, 5, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 3, 2, 1, 5, 1, 2
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

A self-generating sequence. This is the m=6 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=6)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/6) if n==0 (mod 6); a(n) = a(n - floor(n/6)) otherwise.

A255827 a(n) = n for n < 7; a(7n) = a(n); if every 7th term (a(7), a(14), a(21),...) is deleted, this gives back the original sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 5, 3, 4, 1, 2, 5, 3, 6, 4, 1, 2, 5, 3, 6, 1, 4, 1, 2, 5, 3, 6, 1, 1, 4, 1, 2, 5, 3, 1, 6, 1, 1, 4, 1, 2, 1, 5, 3, 1, 6, 1, 1, 1, 4, 1, 2, 1, 5, 3, 1, 1, 6, 1, 1, 1, 4, 1, 1, 2, 1, 5, 3, 1, 2, 1, 6
Offset: 1

Views

Author

M. F. Hasler, Mar 07 2015

Keywords

Comments

A self-generating sequence. This is the m=7 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.

Crossrefs

Programs

  • PARI
    a(n, m=7)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015

Formula

a(n) = a(n/7) if n==0 (mod 7); a(n) = a(n - floor(n/7)) otherwise.
Showing 1-10 of 11 results. Next