cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117944 Triangle related to powers of 3 partitions of n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Inverse is A117945.
Row sums of inverse are A039966.

Examples

			Triangle begins
  1;
  0, 1;
  1, 0, 1;
  0, 0, 0, 1;
  0, 0, 0, 0, 1;
  0, 0, 0, 1, 0, 1;
  1, 0, 0, 0, 0, 0, 1;
  0, 1, 0, 0, 0, 0, 0, 1;
  1, 0, 1, 0, 0, 0, 1, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= Mod[Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j,0,n}], 2];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
  • Sage
    def A117944(n, k): return ( sum(jacobi_symbol(binomial(n, j), 3)*jacobi_symbol(binomial(n-j, k), 3) for j in (0..n)) )%2
    flatten([[A117944(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Oct 29 2021

Formula

Triangle T(n,k) = Sum_{j=0..n} L(C(n,j)/3)*L(C(n-j,k)/3) mod 2, where L(j/p) is the Legendre symbol of j and p.
T(n, k) = A117939(n,k) mod 2.
T(n, k) = A117939^(-1)(n,k) mod 2.
Sum_{k=0..n} T(n, k) = A117943(n).