cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117955 Number of partitions of n into exactly 2 types of odd parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 4, 7, 8, 10, 11, 13, 12, 19, 18, 20, 22, 25, 24, 30, 31, 36, 33, 39, 38, 45, 45, 48, 51, 57, 54, 60, 56, 69, 67, 72, 72, 79, 78, 84, 84, 90, 87, 97, 97, 112, 99, 107, 112, 117, 115, 126, 118, 131, 134, 137, 136, 152, 143, 149, 149, 163, 152, 174, 164
Offset: 1

Views

Author

Emeric Deutsch, Apr 05 2006

Keywords

Examples

			a(8)=5 because we have [7,1],[5,3],[5,1,1,1],[3,3,1,1] and [3,3,1,1].
		

Crossrefs

Cf. A002133.

Programs

  • Maple
    g:=sum(sum(x^(2*i+2*j-2)/(1-x^(2*i-1))/(1-x^(2*j-1)),j=1..i-1),i=1..40): gser:=series(g,x=0,75): seq(coeff(gser,x^n),n=1..72);
  • Mathematica
    With[{nmax = 60}, CoefficientList[Series[Sum[Sum[x^(2*k+2*j-2)/((1-x^(2*k -1))*(1-x^(2*j-1))), {j, 1, k-1}], {k, 1, 3*nmax}], {x, 0, nmax}], x]] (* G. C. Greubel, Oct 05 2018 *)
  • Python
    from sympy import divisors
    def A117955(n): return sum(1 for ax in range(1,n-1) for a in divisors(ax,generator=True) for b in divisors(n-ax,generator=True) if aChai Wah Wu, Dec 14 2024

Formula

G.f.: sum(sum(x^(2i+2j-2)/[(1-x^(2i-1))(1-x^(2j-1))], j=1..i-1), i=1..infinity).
G.f. for number of partitions of n into exactly m types of odd parts is obtained if we substitute x(i) with -Sum_{k>0}(x^(2*n-1)/(x^(2*n-1)-1))^i in the cycle index Z(S(m); x(1),x(2),..,x(m)) of the symmetric group S(m) of degree m. - Vladeta Jovovic, Sep 20 2007