cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117956 Number of partitions of n into exactly 2 types of parts: one odd and one even.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 8, 6, 13, 10, 19, 13, 26, 20, 32, 23, 41, 31, 49, 34, 58, 45, 66, 47, 76, 60, 88, 60, 96, 76, 106, 76, 122, 93, 126, 94, 140, 111, 158, 106, 163, 134, 175, 127, 196, 150, 198, 149, 212, 170, 240, 164, 238, 200, 250, 180, 284, 214, 277, 216, 292, 238
Offset: 1

Views

Author

Emeric Deutsch, Apr 05 2006

Keywords

Examples

			a(7) = 8 because we have [6,1], [5,2], [4,3], [4,1,1,1], [3,2,2], [2,2,2,1],[2,2,1,1,1] and [2,1,1,1,1,1].
		

Crossrefs

Programs

  • Magma
    m:=80; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!((&+[(&+[x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))): j in [1..100]]): k in [1..100]]))); // G. C. Greubel, Oct 06 2018
    
  • Maple
    g := add(add(x^(2*i+2*j-1)/(1-x^(2*i-1))/(1-x^(2*j)), j=1..70), i=1..70):
    gser:=series(g, x=0, 70): seq(coeff(gser, x^n), n=1..67);
  • Mathematica
    With[{nmax = 80}, CoefficientList[Series[Sum[Sum[x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))), {j, 1, 2*nmax}], {k, 1, 2*nmax}], {x, 0, nmax}], x]] (* G. C. Greubel, Oct 06 2018 *)
  • PARI
    my(x='x+O('x^80)); concat([0,0], Vec(sum(k=1,100, sum(j=1,100, x^(2*k + 2*j - 2)/((1 - x^(2*k - 1))*(1 - x^(2*j))))))) \\ G. C. Greubel, Oct 06 2018
    
  • Python
    from sympy import divisors
    def A117956(n): return sum(1 for ax in range(1,n-1) for a in divisors(ax,generator=True) for b in divisors(n-ax,generator=True) if aChai Wah Wu, Dec 14 2024

Formula

G.f.: Sum_{i>=1} Sum{j>=1} x^(2*i+2*j-1)/((1-x^(2*i-1))*(1-x^(2*j))).
Convolution of x(n) and y(n), where x(n) is the number of even divisors of n and y(n) is the number of odd divisors of n. - Vladeta Jovovic, Apr 05 2006