cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117964 a(n) = A117963(n) mod 2.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

a(3n+2) = 0, a(3n) = a(3n+1). a(3n) may be equal to A088917(n).

Crossrefs

Formula

a(n)=sum{k=0..floor(n/2), L(C(n-k,k)/3)} mod 2 where L(j/p) is the Legendre symbol of j and p.
a(2*A081601(n)) = a(1+2*A081601(n)) = 1. [Conjectured, also these two formulas together seem to give the positions of all 1's] - Antti Karttunen, Jan 01 2023

A117947 T(n,k)=L(C(n,k)/3) where L(j/p) is the Legendre symbol of j and p.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, 0, -1, 0, 0, 1, 1, 1, 0, -1, -1, 0, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, -1, 1, 0, 0, 0, 0, 0, 0, 1, -1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 1, 1, -1, 1, 0, 0, 0, 1, -1, 1, 1, -1, 1
Offset: 0

Views

Author

Paul Barry, Apr 05 2006

Keywords

Comments

Row sums are A059126. Diagonal sums are A117963. Could be called the Legendre-binomial matrix for p=3.
The matrix square equals triangle A117939; the matrix log equals triangle A120854 divided by 2. - Paul D. Hanna, Jul 08 2006

Examples

			Triangle begins:
  1;
  1, 1;
  1, -1, 1;
  1, 0, 0, 1;
  1, 1, 0, 1, 1;
  ...
		

Crossrefs

Cf. A117939 (matrix square), A120854 (2*log).

Programs

Formula

T(n,k) = balanced ternary digit of C(n,k) mod 3. - Paul D. Hanna, Jul 08 2006
Showing 1-2 of 2 results.