cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118011 Complement of the Connell sequence (A001614); a(n) = 4*n - A001614(n).

Original entry on oeis.org

3, 6, 8, 11, 13, 15, 18, 20, 22, 24, 27, 29, 31, 33, 35, 38, 40, 42, 44, 46, 48, 51, 53, 55, 57, 59, 61, 63, 66, 68, 70, 72, 74, 76, 78, 80, 83, 85, 87, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 123, 125, 127, 129, 131, 133, 135, 137, 139
Offset: 1

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

a(n) is the position of the second appearance of n in A117384, where A117384(m) = A117384(k) and k = 4*A117384(m) - m. The Connell sequence (A001614) is generated as: 1 odd, 2 even, 3 odd, ...

Crossrefs

A171152 gives partial sums.

Programs

  • Magma
    [2*n+Round(Sqrt(2*n)): n in [1..70]]; // Vincenzo Librandi, Apr 16 2015
    
  • Mathematica
    Table[2 n + Round[Sqrt[2 n]], {n, 70}] (* Vincenzo Librandi, Apr 16 2015 *)
  • Python
    from math import isqrt
    def A118011(n): return (m:=n<<1)+(k:=isqrt(m))+int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

A001614(n) = A118012(a(n)).
a(n) = 2n+[(1+sqrt(8n-7))/2]. - Juri-Stepan Gerasimov Aug 25 2009
a(n) = 2*n+round(sqrt(2*n)). - Gerald Hillier, Apr 16 2015
From Robert Israel, Apr 20 2015 (Start):
a(n) = 2*n + 1 + Sum_{j=0..n-2} A023531(j).
G.f.: 2*x/(1-x)^2 + x/(1-x) * Sum_{j=0..oo} x^(j*(j+1)/2) = 2*x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
a(n) = n+A014132(n). - Chai Wah Wu, Oct 19 2024