cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118022 Triangle T, read by rows, such that T^2 = SHIFT-UP(T); i.e., the matrix square of T shifts each column of T up 1 row, dropping the main diagonal consisting of the powers of 2: [T^2](n,k) = T(n+1,k) with T(n,n) = 2^n for n>=k>=0.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 19, 24, 16, 8, 243, 304, 192, 64, 16, 6227, 7776, 4864, 1536, 256, 32, 319251, 398528, 248832, 77824, 12288, 1024, 64, 32737427, 40864128, 25505792, 7962624, 1245184, 98304, 4096, 128, 6714170259, 8380781312, 5230608384
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

Column 0 is A118023, where T(n,k) = A118023(n-k)*2^(k*(n-k+1)).

Examples

			Triangle T begins:
1;
1,2;
3,4,4;
19,24,16,8;
243,304,192,64,16;
6227,7776,4864,1536,256,32;
319251,398528,248832,77824,12288,1024,64;
32737427,40864128,25505792,7962624,1245184,98304,4096,128; ...
Matrix square, T^2, equals SHIFT_UP(T):
1;
3,4;
19,24,16;
243,304,192,64;
6227,7776,4864,1536,256;
319251,398528,248832,77824,12288,1024; ...
G.f. for column 0: 1 = (1-x) + 1*x*(1-x)(1-2x) + 3*x^2*(1-x)(1-2x)(1-4x) + ...
+ T(n,0)*x^n*(1-x)(1-2x)(1-4x)*..*(1-2^n*x) + ...
G.f. for column 1: 2 = 2(1-2x) + 4*x*(1-2x)(1-4x) + 24*x^2*(1-2x)(1-4x)(1-8x) + ...
+ T(n+1,1)*x^n*(1-2x)(1-4x)(1-8x)*..*(1-2^(n+1)*x) + ...
G.f. for column 2: 4 = 4(1-4x) + 16*x*(1-4x)(1-8x) + 192*x^2*(1-4x)(1-8x)(1-16x) + ...
+ T(n+2,2)*x^n*(1-4x)(1-8x)(1-16x)*..*(1-2^(n+2)*x) + ...
		

Crossrefs

Cf. A118023 (column 0); A117401 (related triangle); A118024 (variant).

Programs

  • PARI
    {T(n, k)=local(A=matrix(1, 1), B); A[1, 1]=1; for(m=2, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, i]=2^(i-1), if(j==1, B[i, j]=(A^2)[i-1, 1], B[i, j]=(A^2)[i-1, j])); )); A=B); return(A[n+1, k+1])}

Formula

G.f. for column k: 2^k = Sum{n>=0} T(n+k,k)*x^n*prod_{j=0..n} (1-2^(j+k)*x). T(n,k) = T(n-k,0)*2^(k*(n-k+1)) = A118023(n-k)*2^(k*(n-k+1)).