cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118023 Column 0 of triangle A118022, where the matrix square of A118022 shifts each column up 1 row, dropping the main diagonal of powers of 2.

Original entry on oeis.org

1, 1, 3, 19, 243, 6227, 319251, 32737427, 6714170259, 2754046149011, 2259333156408723, 3706972573115098515, 12164337831474297132435, 79833941280970262512121235, 1047892334589811621056371520915
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

Numerators of the q-Catalan numbers for q = 1/2. - John Keith, Feb 19 2021

Examples

			1 = (1-x) + 1*x*(1-x)*(1-2*x) + 3*x^2*(1-x)*(1-2*x)*(1-4*x) + 19*x^3*(1-x)*(1-2*x)*(1-4*x)*(1-8*x) + 243*x^4*(1-x)*(1-2*x)*(1-4*x)*(1-8*x)*(1-16*x) + ...
		

Crossrefs

Cf. A118022.

Programs

  • PARI
    {a(n)=if(n==0, 1, polcoeff(1-sum(k=0, n-1, a(k)*x^k*prod(j=0, k, 1-2^j*x+x*O(x^n))), n))}
    {a(n)=local(CF=1+x*O(x^n)); for(k=1, n, CF=1/(1-x/2^(n-k+1)*CF)); 2^(n*(n+1)/2)*polcoeff(CF, n)} \\ Paul D. Hanna, Sep 28 2012

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n*prod_{k=0, n} (1-2^k*x) with a(0)=1.
a(n) = 2^(n*(n-1)/2)*b(n) where b(0)=1 and b(n)=sum(i=0,n-1,b(i)*b(n-1-i)/2^i). - Benoit Cloitre, Oct 25 2006
G.f.: Sum_{n>=0} a(n)*x^n/2^(n*(n+1)/2) = 1/(1 - (x/2)/(1 - (x/2^2)/(1 - (x/2^3)/(1 - (x/2^4)/(1 - (x/2^5)/(1 - ...)))))), a continued fraction. - Paul D. Hanna, Sep 28 2012

A118024 Triangle T, read by rows, T(n,k) = T(n-k)*2^(k*(n-k)) such that column 0 of the matrix square of T equals column 0 of T shifted left: [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)) for n>=k>=0.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 8, 4, 1, 28, 48, 32, 8, 1, 216, 448, 384, 128, 16, 1, 2864, 6912, 7168, 3072, 512, 32, 1, 66656, 183296, 221184, 114688, 24576, 2048, 64, 1, 2760896, 8531968, 11730944, 7077888, 1835008, 196608, 8192, 128, 1, 205824384, 706789376
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2006

Keywords

Comments

Column 0 is A118025, where T(n,k) = A118025(n-k)*2^(k*(n-k)).

Examples

			Triangle T begins:
1;
1,1;
2,2,1;
6,8,4,1;
28,48,32,8,1;
216,448,384,128,16,1;
2864,6912,7168,3072,512,32,1;
66656,183296,221184,114688,24576,2048,64,1; ...
2760896,8531968,11730944,7077888,1835008,196608,8192,128,1; ...
Matrix square is given by [T^2](n,k) = T(n-k+1,0)*2^(k*(n-k)):
1;
2,1;
6,4,1;
28,24,8,1;
216,224,96,16,1;
2864,3456,1792,384,32,1; ...
so that column 0 of T^2 equals column 0 of T shift left 1 place.
		

Crossrefs

Cf. A118025 (column 0); A117401 (related triangle); A118022 (variant).
Cf. A123305.

Programs

  • PARI
    {T(n, k)=if(n<0 || k>n,0,if(n==k,1,2^k*sum(j=0, n-1, T(n-1, j)*T(j, k)); ))} \\ Paul D. Hanna, Sep 25 2006

Formula

T(n,k) = A118025(n-k)*2^(k*(n-k)) for n>=k>=0.
Showing 1-2 of 2 results.