A343726 Squares with exactly one even digit.
0, 4, 16, 25, 36, 49, 81, 121, 169, 196, 361, 529, 576, 729, 961, 1156, 1369, 1521, 1936, 3136, 3721, 3969, 5329, 5776, 5929, 7396, 7569, 7921, 15129, 15376, 17161, 17956, 19321, 31329, 35721, 51529, 53361, 57121, 59536, 97969, 111556, 113569, 119716, 131769
Offset: 1
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> (l-> is(add(i mod 2, i=l)=nops(l)-1))(convert(n, base, 10)): select(q, [i^2$i=0..400])[]; # Alois P. Heinz, May 22 2021
-
Mathematica
Select[Range[0, 400]^2, Count[IntegerDigits[#], ?EvenQ] == 1 &] (* _Amiram Eldar, May 21 2021 *)
-
PARI
isA343726(n) = if(issquare(n) && (n!=0), my(d=digits(n)); #d - vecsum(d%2) == 1, n==0) \\ Jianing Song, May 22 2021
-
Python
def ok(sq): return sum(d in "02468" for d in str(sq)) == 1 def aupto(limit): sqs = (i*i for i in range(int(limit**.5)+2) if i*i <= limit) return list(filter(ok, sqs)) print(aupto(131769)) # Michael S. Branicky, May 20 2021
Comments