A118107 Period of the vector sequence d(n)^2^k mod n for k=1,2,3,..., where d(n) is the vector of divisors of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 6, 2, 1, 1, 2, 1, 4, 2, 10, 1, 1, 1, 4, 1, 2, 1, 6, 4, 2, 6, 3, 1, 1, 1, 4, 2, 1, 1, 4, 1, 1, 10, 2, 1, 2, 1, 6, 4, 6, 4, 2, 1, 1, 1, 4, 1, 2, 1, 3, 3, 4, 1, 2, 2, 10, 4, 11, 6, 1, 1, 6, 4, 4
Offset: 1
Keywords
Examples
See A118106 for an example involving d(n)^k.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Cf. A118106 (period of the vector sequence d(n)^k mod n).
Programs
-
Mathematica
Table[d=Divisors[n]; k=0; found=False; While[i=0; While[i
-
PARI
A118107(n) = { my(divs=apply(d -> (d%n),divisors(n)), odivs = Vec(divs), vs = Map()); mapput(vs, odivs, 0); for(k=1,oo,divs = vector(#divs,i,(divs[i]*divs[i])%n); if(mapisdefined(vs, divs), return(k-mapget(vs, divs)), mapput(vs, divs, k))); }; \\ Antti Karttunen, Sep 23 2018
Comments