cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118107 Period of the vector sequence d(n)^2^k mod n for k=1,2,3,..., where d(n) is the vector of divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 2, 1, 6, 2, 1, 1, 2, 1, 4, 2, 10, 1, 1, 1, 4, 1, 2, 1, 6, 4, 2, 6, 3, 1, 1, 1, 4, 2, 1, 1, 4, 1, 1, 10, 2, 1, 2, 1, 6, 4, 6, 4, 2, 1, 1, 1, 4, 1, 2, 1, 3, 3, 4, 1, 2, 2, 10, 4, 11, 6, 1, 1, 6, 4, 4
Offset: 1

Views

Author

T. D. Noe, Apr 13 2006

Keywords

Comments

This sequence is related to the period of sigma_(2^k)(n) mod n, which is important in studying the numbers n dividing sigma_(2^k)(n) for all k>0. See A066292 and A118076. Note that a(n)=1 if n is a power of a prime.

Examples

			See A118106 for an example involving d(n)^k.
		

Crossrefs

Cf. A118106 (period of the vector sequence d(n)^k mod n).

Programs

  • Mathematica
    Table[d=Divisors[n]; k=0; found=False; While[i=0; While[i
    				
  • PARI
    A118107(n) = { my(divs=apply(d -> (d%n),divisors(n)), odivs = Vec(divs), vs = Map()); mapput(vs, odivs, 0); for(k=1,oo,divs = vector(#divs,i,(divs[i]*divs[i])%n); if(mapisdefined(vs, divs), return(k-mapget(vs, divs)), mapput(vs, divs, k))); }; \\ Antti Karttunen, Sep 23 2018