A118187 Antidiagonal sums of triangle A118185: a(n) = Sum_{k=0..[n/2]} 4^(k*(n-2*k)) for n>=0.
1, 1, 2, 5, 18, 81, 514, 5185, 73730, 1327361, 33685506, 1359217665, 77311508482, 5567355555841, 565149010231298, 91215553426898945, 20753150033413537794, 5977902509385249259521, 2427296516310194305630210
Offset: 0
Keywords
Examples
A(x) = 1/(1-x^2) + x/(1-4*x^2) + x^2/(1-16*x^2) + x^3/(1-64*x^2) + ... = 1 + x + 2*x^2 + 5*x^3 + 18*x^4 + 81*x^5 + 514*x^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..100
Programs
-
Magma
[(&+[4^(k*(n-2*k)): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 29 2021
-
Mathematica
Table[Sum[4^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 29 2021 *)
-
PARI
a(n)=sum(k=0, n\2, (4^k)^(n-2*k) )
-
Sage
[sum(4^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 29 2021
Formula
G.f.: A(x) = Sum_{n>=0} x^n/(1-4^n*x^2).
a(2*n) = Sum_{k=0..n} 4^(2*k*(n-k)).
a(2*n+1) = Sum_{k=0..n} (4^k)^(2*(n-k)+1).