cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118207 Expansion of Product_{k>=1} (1 + x^k)^lambda(k) where lambda(k) is the Liouville function, A008836.

Original entry on oeis.org

1, 1, -1, -2, 1, 2, 0, -2, -2, 0, 5, 2, -7, -6, 7, 9, 0, -10, -9, 4, 17, 2, -18, -12, 14, 21, 5, -26, -25, 14, 41, 4, -38, -35, 18, 53, 23, -56, -54, 31, 86, 15, -78, -85, 34, 112, 41, -110, -102, 49, 158, 40, -138, -150, 68, 195, 68, -191, -190, 69, 279, 89, -217, -253, 102, 327, 122, -336, -335, 118, 462, 142, -361, -430, 170
Offset: 0

Views

Author

Stuart Clary, Apr 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; CoefficientList[ Series[ Product[ (1 + x^k)^lambda[k], {k, 1, nmax} ], {x, 0, nmax} ], x ]
    (* From version 7 on *) nmax = 80; CoefficientList[ Series[ Product[ (1 + x^k)^LiouvilleLambda[k], {k, 1, nmax}], {x, 0, nmax}], x] (* Jean-François Alcover, Jul 30 2013 *)

Formula

From Peter Bala, Apr 05 2023: (Start)
G.f.: A(x) = Product_{k >= 1} C(k,x^(2*k)) / C(k,x^k) = Product_{k >= 1} C(2*k,x^k) / C(4*k,x^k) = -Product_{k >= 1} C(k,x^(2*k)) * C(2*k,x^k), where C(k,x) denotes the k-th cyclotomic polynomial.
Conjecture: A(x^2) = Product_{k >= 1} C(k,x^k) * C(k,(-x)^k). (End)

A118208 G.f.: A(x) = Product_{k>=1} (1 + x^k)^(-lambda(k)) where lambda(k) is the Liouville function, A008836.

Original entry on oeis.org

1, -1, 2, -1, 0, 2, -4, 5, -3, 0, 4, -6, 6, -2, -3, 8, -10, 6, 0, -6, 14, -13, 9, 0, -12, 17, -18, 11, 3, -18, 28, -22, 14, 7, -25, 30, -31, 11, 12, -23, 34, -28, 9, 12, -30, 35, -31, 10, 11, -30, 56, -35, 26, -4, -41, 51, -65, 48, -8, -28, 65, -74, 70, -9, -49, 71, -112, 69, -4, -48, 135, -129, 82, -21, -83, 155, -176, 99, 0
Offset: 0

Views

Author

Stuart Clary, Apr 15 2006

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; CoefficientList[ Series[ Product[ (1 + x^k)^(-lambda[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ]

Formula

G.f.: A(x) = Product_{k >= 1} C(k,x^k)*C(2*k,x^(2*k)), where C(k,x) denotes the k-th cyclotomic polynomial. - Peter Bala, Mar 31 2023
Showing 1-2 of 2 results.