A118219 Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.
3, 30, 17, 248, 515, 49682
Offset: 1
Examples
a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)
Extensions
a(6) from Robert G. Wilson v, Mar 02 2007
Comments