cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118227 Decimal expansion of Cahen's constant.

Original entry on oeis.org

6, 4, 3, 4, 1, 0, 5, 4, 6, 2, 8, 8, 3, 3, 8, 0, 2, 6, 1, 8, 2, 2, 5, 4, 3, 0, 7, 7, 5, 7, 5, 6, 4, 7, 6, 3, 2, 8, 6, 5, 8, 7, 8, 6, 0, 2, 6, 8, 2, 3, 9, 5, 0, 5, 9, 8, 7, 0, 3, 0, 9, 2, 0, 3, 0, 7, 4, 9, 2, 7, 7, 6, 4, 6, 1, 8, 3, 2, 6, 1, 0, 8, 4, 8, 4, 4, 0, 8, 9, 5, 5, 5, 0, 4, 6, 3, 4, 3, 1, 9, 5, 4, 0, 5, 3
Offset: 0

Views

Author

Eric W. Weisstein, Apr 16 2006

Keywords

Comments

Cahen proved that his constant is irrational. Davison and Shallit proved that it is transcendental and computed its simple continued fraction expansion A006280. - Jonathan Sondow, Aug 17 2014
Named after the French mathematician Eugène Cahen (1865 - 1941). - Amiram Eldar, Oct 29 2020

Examples

			0.6434105462883380261...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.7, p. 436.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := a[n] = a[n-1]^2 - a[n-1]+1; kmax = 1; FixedPoint[ RealDigits[ Sum[(-1)^k/(a[k]-1), {k, 0, kmax += 10}], 10, 105][[1]]&, kmax] (* Jean-François Alcover, Jul 28 2011, updated Jun 19 2014 *)
    Most@First@RealDigits@N[x=1; 1+Sum[x=x(1+x); (-1)^k/x, {k, 1, 9}], 106] (* Oliver Seipel, Aug 25 2024, after Charles R Greathouse IV *)
    Most@First@RealDigits@N[x=1; 1/2+Sum[x=x(1+x)(1+x+x^2); 1/(x+1), {k, 1, 4}], 106] (* Oliver Seipel, Aug 25 2024 *)
  • PARI
    C=1;1+suminf(k=1,C+=C^2; (-1)^k/C) \\ Charles R Greathouse IV, Jul 14 2020

Formula

Equals Sum_{k >= 0} (-1)^k/(A000058(k)-1).
Equals Sum_{n>=0} 1/A000058(2*n) = 1 - Sum_{n>=0} 1/A000058(2*n+1). - Amiram Eldar, Oct 29 2020
Equals 1 + (1/2) * Sum_{n>=0} (-1)^(n+1)/A129871(n). - Bernard Schott, Apr 06 2021