cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118264 Coefficient of q^n in (1-q)^3/(1-3q); dimensions of the enveloping algebra of the derived free Lie algebra on 3 letters.

Original entry on oeis.org

1, 0, 3, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2006

Keywords

Comments

a(n) is the number of generalized compositions of n when there are i^2-1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Examples

			The enveloping algebra of the derived free Lie algebra is characterized as the intersection of the kernels of all partial derivative operators in the space of non-commutative polynomials, a(0) = 1 since all constants are killed by derivatives, a(1) = 0 since no polys of degree 1 are killed, a(2) = 3 since all Lie brackets [x1,x2], [x1,x3], [x2, x3] are killed by all derivative operators.
		

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    f:=n->coeftayl((1-q)^3/(1-3*q),q=0,n):seq(f(i),i=0..15);
  • Mathematica
    CoefficientList[Series[(1-q)^3/(1-3q),{q,0,30}],q] (* or *) Join[{1,0,3}, NestList[3#&,8,30]] (* Harvey P. Dale, Jun 28 2011 *)
    Join[{1, 0, 3}, LinearRecurrence[{3}, {8}, 24]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

G.f.: (1-x)^3/(1-3x).
a(n) = 3^{n-1}-3^{n-3} for n>=3.
a(n) = A080923(n-1), n>1.
If p[i]=i^2-1 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
For a(n)>=8, a(n+1)=3*a(n). - Harvey P. Dale, Jun 28 2011

Extensions

Formula corrected Mike Zabrocki, Jul 22 2010