cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118265 Coefficient of q^n in (1-q)^4/(1-4q); dimensions of the enveloping algebra of the derived free Lie algebra on 4 letters.

Original entry on oeis.org

1, 0, 6, 20, 81, 324, 1296, 5184, 20736, 82944, 331776, 1327104, 5308416, 21233664, 84934656, 339738624, 1358954496, 5435817984, 21743271936, 86973087744, 347892350976, 1391569403904, 5566277615616, 22265110462464, 89060441849856
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2006

Keywords

Comments

For n>=4, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4} such that for fixed, different x_1, x_2, x_3, x_4 in {1,2,...,n} and fixed y_1, y_2, y_3, y_ 4 in {1,2,3,4} we have f(x_i)<>y_i, (i=1,2,3,4). - Milan Janjic, May 13 2007
Also the number of monic polynomials of degree n over GF(4) without any linear factors. - Greyson C. Wesley, Jul 05 2022

Examples

			The enveloping algebra of the derived free Lie algebra is characterized as the intersection of the kernels of all partial derivative operators in the space of non-commutative polynomials, a(0) = 1 since all constants are killed by derivatives, a(1) = 0 since no polys of degree 1 are killed, a(2) = 6 since all Lie brackets [x1,x2], [x1,x3], [x1, x4], [x2,x3], [x2,x4], [x3,x4] are killed by all derivative operators.
		

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    f:=n->add((-1)^k*C(4,k)*4^(n-k),k=0..min(n,4)); seq(f(i),i=0..15);
  • Mathematica
    a[n_] := If[n<4, {1, 0, 6, 20}[[n+1]], 81*4^(n-4)];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Dec 10 2018 *)

Formula

G.f.: (1-q)^4/(1-4q).
a(n) = Sum_{k=0..min(n,4)} (-1)^k*C(4,k)*4^(n-k).
a(n) = 81*4^(n-4) for n>3. - Jean-François Alcover, Dec 10 2018