cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118266 Coefficient of q^n in (1-q)^5/(1-5q); dimensions of the enveloping algebra of the derived free Lie algebra on 5 letters.

Original entry on oeis.org

1, 0, 10, 40, 205, 1024, 5120, 25600, 128000, 640000, 3200000, 16000000, 80000000, 400000000, 2000000000, 10000000000, 50000000000, 250000000000, 1250000000000, 6250000000000, 31250000000000, 156250000000000
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2006

Keywords

Comments

For n>=5, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5} such that for fixed, different x_1, x_2, x_3, x_4, x_5 in {1,2,...,n} and fixed y_1, y_2, y_3, y_ 4, y_5 in {1,2,3,4,5} we have f(x_i)<>y_i, (i=1,2,3,4,5). - Milan Janjic, May 13 2007

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    f:=n->add((-1)^k*binomial(5,k)*5^(n-k),k=0..min(n,4)): seq(f(i),i=0..15);
  • Mathematica
    a[n_] := If[n<6, {1, 0, 10, 40, 205, 1024}[[n+1]], 1024*5^(n-5)];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 10 2018 *)

Formula

G.f.: (1-q)^5/(1-5q) sum( (-1)^k*C(5,k) 5^(n-k); k=0..min(n,5));
a(n) = 1024*5^(n-5) for n>5. - Jean-François Alcover, Dec 10 2018

A118264 Coefficient of q^n in (1-q)^3/(1-3q); dimensions of the enveloping algebra of the derived free Lie algebra on 3 letters.

Original entry on oeis.org

1, 0, 3, 8, 24, 72, 216, 648, 1944, 5832, 17496, 52488, 157464, 472392, 1417176, 4251528, 12754584, 38263752, 114791256, 344373768, 1033121304, 3099363912, 9298091736, 27894275208, 83682825624, 251048476872, 753145430616
Offset: 0

Views

Author

Mike Zabrocki, Apr 20 2006

Keywords

Comments

a(n) is the number of generalized compositions of n when there are i^2-1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

Examples

			The enveloping algebra of the derived free Lie algebra is characterized as the intersection of the kernels of all partial derivative operators in the space of non-commutative polynomials, a(0) = 1 since all constants are killed by derivatives, a(1) = 0 since no polys of degree 1 are killed, a(2) = 3 since all Lie brackets [x1,x2], [x1,x3], [x2, x3] are killed by all derivative operators.
		

References

  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    f:=n->coeftayl((1-q)^3/(1-3*q),q=0,n):seq(f(i),i=0..15);
  • Mathematica
    CoefficientList[Series[(1-q)^3/(1-3q),{q,0,30}],q] (* or *) Join[{1,0,3}, NestList[3#&,8,30]] (* Harvey P. Dale, Jun 28 2011 *)
    Join[{1, 0, 3}, LinearRecurrence[{3}, {8}, 24]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

G.f.: (1-x)^3/(1-3x).
a(n) = 3^{n-1}-3^{n-3} for n>=3.
a(n) = A080923(n-1), n>1.
If p[i]=i^2-1 and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
For a(n)>=8, a(n+1)=3*a(n). - Harvey P. Dale, Jun 28 2011

Extensions

Formula corrected Mike Zabrocki, Jul 22 2010

A122393 Dimension of 4-variable non-commutative harmonics (Hausdorff derivative). The dimension of the space of non-commutative polynomials in 4 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( w ) = sum over all subwords of w deleting xi once).

Original entry on oeis.org

1, 3, 11, 44, 176, 706, 2824, 11296, 45183, 180731, 722925, 2891700, 11566800, 46267200, 185068800, 740275200, 2961100800, 11844403200, 47377612800, 189510451200, 758041804800, 3032167219200, 12128668876800, 48514675507200
Offset: 0

Views

Author

Mike Zabrocki, Aug 31 2006

Keywords

Examples

			a(1) = 3 because x1 - x2, x2 - x3, x3 - x4 are all killed by d_x1+d_x2+d_x3+d_x4
		

References

  • C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
  • C. Reutenauer, Free Lie algebras. London Mathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993. xviii+269 pp.

Crossrefs

Programs

  • Maple
    coeffs(convert(series(mul(1-q^i,i=1..4)/(1-4*q),q,20),`+`)-O(q^20),q);

Formula

G.f.: (1-q)*(1-q^2)*(1-q^3)*(1-q^4)/(1-4*q) a(n) = 722925*4^(n-10) for n>9

A356036 Triangle read by rows, giving in the first column the powers of 3 (A000244) and in the next columns 4/3 times the previous row entry.

Original entry on oeis.org

1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 256, 243, 324, 432, 576, 768, 1024, 729, 972, 1296, 1728, 2304, 3072, 4096, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144
Offset: 0

Views

Author

Wolfdieter Lang, Aug 01 2022

Keywords

Comments

This is Boethius's triangle, with rows read as columns. See the link and reference.

Examples

			The triangle T begins:
n\k     0     1      2      3      4      5      6      7      8      9  ...
0:      1
1:      3     4
2:      9    12     16
3:     27    36     48     64
4:     81   108    144    192    256
5:    243   324    432    576    768   1024
6:    729   972   1296   1728   2304   3072   4096
7:   2187  2916   3888   5184   6912   9216  12288  16384
8:   6561  8748  11664  15552  20736  27648  36864  49152  65536
9:  19683 26244  34992  46656  62208  82944 110592 147456 196608 262144
...
		

References

  • Thomas Sonar, 3000 Jahre Analysis, 2. Auflage, Springer Spektrum, 2016, p.94, Abb. 3.1.2 und Abb. 3.1.3.

Crossrefs

Columns: A000244, A003946, A257970, ...
Diagonals: A000302, A002001(n+1), A002063, A002063(n+3), A118265(n+4), ...
Row sums: A005061(n+1).

Programs

  • Mathematica
    T[n_, k_] := 3^(n - k) * 4^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 05 2022 *)

Formula

T(n, k) = 3^(n-k)*4^k, for n >= 0, and k = 1, 2, ..., n.
G.f. of row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k: G(x, y) = 1/((1 - 3*x)*(1 - 4*x*y)).
Showing 1-4 of 4 results.