cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118322 Decimal expansion of perimeter of the closed portion of the bow curve.

Original entry on oeis.org

1, 9, 2, 1, 5, 1, 1, 3, 6, 5, 1, 7, 2, 5, 1, 2, 5, 7, 0, 1, 5, 6, 2, 9, 9, 8, 2, 6, 0, 5, 9, 7, 4, 0, 8, 3, 6, 5, 7, 6, 1, 3, 0, 4, 9, 0, 5, 2, 7, 6, 2, 4, 2, 5, 5, 4, 5, 4, 4, 1, 5, 7, 6, 4, 8, 3, 1, 8, 9, 3, 1, 0, 5, 4, 6, 3, 2, 7, 7, 9, 6, 1, 4, 7, 0, 5, 8, 3, 9, 5, 1, 8, 6, 4, 2, 9, 0, 2, 0, 5, 5, 2, 6, 0, 4
Offset: 1

Views

Author

Eric W. Weisstein, Apr 23 2006

Keywords

Comments

Writing x=r*cos(phi), y=r*sin(phi), r=sin(phi)*(1-2*sin^2(phi))/cos^4(phi) in circular coordinates gives the arc length of one wing of Integral_{phi=0..Pi/4} sqrt((dx/dphi)^2 + (dy/dphi)^2) dphi = Integral_{s=0..1/sqrt(2)} sqrt(1-5*s^2+20*s^6) / (1-s^2)^3 ds. - R. J. Mathar, Mar 23 2010

Examples

			1.9215113651725125701...
		

Programs

  • Maple
    Digits := 120 : f := 2*sqrt(1-5*x^2+20*x^6)/(1-x^2)^3 ; Int(f,x=0..1/sqrt(2.0)) ; x := evalf(%) ; # R. J. Mathar, Mar 23 2010
  • Mathematica
    f[x_] := 2*Sqrt[1-5*x^2+20*x^6]/(1-x^2)^3; First[ RealDigits[ NIntegrate[f[x], {x, 0, 1/Sqrt[2]}, WorkingPrecision -> 120], 10, 105]](* Jean-François Alcover, Jun 08 2012, after R. J. Mathar *)

Extensions

More digits from R. J. Mathar, Mar 23 2010