A118343 Triangle, read by rows, where diagonals are successive self-convolutions of A108447.
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0
Examples
Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1) at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3) or 837 = 519 - 132 + 190 + 260. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 4, 0; 1, 3, 9, 20, 0; 1, 4, 15, 48, 113, 0; 1, 5, 22, 85, 282, 688, 0; 1, 6, 30, 132, 519, 1762, 4404, 0; 1, 7, 39, 190, 837, 3330, 11488, 29219, 0; 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0; 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>n then 0; elif k=0 then 1; elif k=n then 0; else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1); fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
-
PARI
{T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
-
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0): return 1 elif (k==n): return 0 else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021
Formula
Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021
Comments