cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118343 Triangle, read by rows, where diagonals are successive self-convolutions of A108447.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 20, 0, 1, 4, 15, 48, 113, 0, 1, 5, 22, 85, 282, 688, 0, 1, 6, 30, 132, 519, 1762, 4404, 0, 1, 7, 39, 190, 837, 3330, 11488, 29219, 0, 1, 8, 49, 260, 1250, 5516, 22135, 77270, 199140, 0, 1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A108447 equals the central terms of pendular triangle A118340 and the diagonals of this triangle form the semi-diagonals of the triangle A118340. Row sums equal A054727, the number of forests of rooted trees with n nodes on a circle without crossing edges.

Examples

			Show: T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - T(7,3) + T(8,3) + T(9,3)
or 837 = 519 - 132 + 190 + 260.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  4,   0;
  1, 3,  9,  20,    0;
  1, 4, 15,  48,  113,    0;
  1, 5, 22,  85,  282,  688,     0;
  1, 6, 30, 132,  519, 1762,  4404,      0;
  1, 7, 39, 190,  837, 3330, 11488,  29219,      0;
  1, 8, 49, 260, 1250, 5516, 22135,  77270, 199140,       0;
  1, 9, 60, 343, 1773, 8461, 37404, 151089, 532239, 1385904, 0;
		

Crossrefs

Cf. A054727 (row sums), A108447, A118340.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -T[n-1, k-1] +T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-x+sqrt((1-x)*(1-5*x)+x*O(x^k)))/2/(1-x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -T(n-1, k-1) +T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A108447 satisfies: G = 1 - x*G + x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - T(n-1,k-1) + T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [2*T(n-1+j,k-j) - T(n-2+j,k-j)] for n>k>=0.
Sum_{k=0..n} T(n,k) = [n=0] + A054727(n) = [n=0] + Sum_{j=1..n} binomial(n, j-1)*binomial(3*n-2*j-1, n-j)/(2*n-j). - G. C. Greubel, Mar 17 2021