A118344 Pendular Catalan triangle, read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), else T(n,k) = T(n,n-1-k) - T(n-1,k) - T(n-1,k+1), for n>=k>=0, with T(n,0)=1 and T(n,n)=0^n.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 5, 3, 1, 0, 1, 5, 9, 5, 4, 1, 0, 1, 6, 14, 14, 9, 5, 1, 0, 1, 7, 20, 28, 14, 14, 6, 1, 0, 1, 8, 27, 48, 42, 28, 20, 7, 1, 0, 1, 9, 35, 75, 90, 42, 48, 27, 8, 1, 0, 1, 10, 44, 110, 165, 132, 90, 75, 35, 9, 1, 0, 1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10, 1, 0
Offset: 0
Examples
Row 6 equals the pendular sums of row 5: [1, 4, 5, 3, 1, 0], where the sums proceed as follows: [1, __, __, __, __, __]: T(6,0) = T(5,0) = 1; [1, __, __, __, __, 1]: T(6,5) = T(6,0) - T(5,5) = 1 - 0 = 1; [1, 5, __, __, __, 1]: T(6,1) = T(6,5) + T(5,1) = 1 + 4 = 5; [1, 5, __, __, 4, 1]: T(6,4) = T(6,1) - T(5,4) - T(5,5) = 5-1-0 = 4; [1, 5, 9, __, 4, 1]: T(6,2) = T(6,4) + T(5,2) = 4 + 5 = 9; [1, 5, 9, 5, 4, 1]: T(6,3) = T(6,2) - T(5,3) - T(5,4) = 9-3-1 = 5; [1, 5, 9, 5, 4, 1, 0] finally, append a zero to obtain row 6. Triangle begins: 1; 1, 0; 1, 1, 0; 1, 2, 1, 0; 1, 3, 2, 1, 0; 1, 4, 5, 3, 1, 0; 1, 5, 9, 5, 4, 1, 0; 1, 6, 14, 14, 9, 5, 1, 0; 1, 7, 20, 28, 14, 14, 6, 1, 0; 1, 8, 27, 48, 42, 28, 20, 7, 1, 0; 1, 9, 35, 75, 90, 42, 48, 27, 8, 1, 0; 1, 10, 44, 110, 165, 132, 90, 75, 35, 9, 1, 0; 1, 11, 54, 154, 275, 297, 132, 165, 110, 44, 10, 1, 0; Central terms are Catalan numbers T(2*n,n) = A000108(n); semi-diagonals form successive self-convolutions of the central terms: T(2*n+1,n) = [A000108^2](n), T(2*n+2,n) = [A000108^3](n).
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Maple
T:= proc(n, k) option remember; if k<0 or k>n then 0; elif k=0 then 1; elif k=n then 0; elif n>2*k then T(n, n-k) +T(n-1, k); else T(n, n-k-1) -T(n-1, k) -T(n-1, k+1); fi; end: seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
-
Mathematica
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, If[n>2*k, T[n, n-k] +T[n-1, k], T[n, n-k-1] -T[n-1, k] -T[n-1, k+1] ]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
-
PARI
T(n,k)=if(n
2*k,T(n,n-k)+T(n-1,k),T(n,n-1-k)-T(n-1,k)-if(n-1>k,T(n-1,k+1)) )))) -
Sage
@CachedFunction def T(n, k): if (k<0 or k>n): return 0 elif (k==0): return 1 elif (k==n): return 0 elif (n>2*k): return T(n, n-k) +T(n-1, k) else: return T(n, n-k-1) -T(n-1, k) -T(n-1, k+1) flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021
Formula
T(2*n+m, n) = [A000108^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A000108.
Sum_{k=0..n} T(n,k) = (1/2)*[n=0] + A026010(n-1) = (1/2)*[n=0] + (1/2)^((5 + (-1)^n)/2)*(6*n + 1 + 3*(-1)^n)*Catalan((2*n - 1 + (-1)^n)/4). - G. C. Greubel, Mar 17 2021
Comments