cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118349 Convolution triangle, read by rows, where diagonals are successive self-convolutions of A118346.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 30, 0, 1, 4, 18, 70, 201, 0, 1, 5, 26, 121, 487, 1445, 0, 1, 6, 35, 184, 873, 3592, 10900, 0, 1, 7, 45, 260, 1375, 6606, 27600, 85128, 0, 1, 8, 56, 350, 2010, 10672, 51728, 218566, 682505, 0, 1, 9, 68, 455, 2796, 15996, 85182, 415629, 1771367, 5585115, 0
Offset: 0

Views

Author

Paul D. Hanna, Apr 26 2006

Keywords

Comments

A118346 equals the central terms of pendular triangle A118345 and the diagonals of this triangle form the semi-diagonals of the triangle A118345.

Examples

			Show: T(n,k) = T(n-1,k) - 2*T(n-1,k-1) + 2*T(n,k-1) + T(n+1,k-1)
at n=8,k=4: T(8,4) = T(7,4) - 2*T(7,3) + 2*T(8,3) + T(9,3)
or: 1375 = 873 - 2*184 + 2*260 + 350.
Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  5,   0;
  1, 3, 11,  30,    0;
  1, 4, 18,  70,  201,     0;
  1, 5, 26, 121,  487,  1445,     0;
  1, 6, 35, 184,  873,  3592, 10900,      0;
  1, 7, 45, 260, 1375,  6606, 27600,  85128,       0;
  1, 8, 56, 350, 2010, 10672, 51728, 218566,  682505,       0;
  1, 9, 68, 455, 2796, 15996, 85182, 415629, 1771367, 5585115, 0;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or  k>n then 0;
        elif k=0 then 1;
        elif k=n then 0;
        else T(n-1, k) -2*T(n-1, k-1) +2*T(n, k-1) +T(n+1, k-1);
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Mar 17 2021
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, 1, If[k==n, 0, T[n-1, k] -2*T[n-1, k-1] +2*T[n, k-1] +T[n+1, k-1] ]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2021 *)
  • PARI
    {T(n,k)=polcoeff((serreverse(x*(1-2*x+sqrt((1-2*x)*(1-6*x)+x*O(x^k)))/2/(1-2*x))/x)^(n-k),k)}
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0): return 1
        elif (k==n): return 0
        else: return T(n-1, k) -2*T(n-1, k-1) +2*T(n, k-1) +T(n+1, k-1)
    flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 17 2021

Formula

Since g.f. G=G(x) of A118346 satisfies: G = 1 - 2*x*G + 2*x*G^2 + x*G^3 then T(n,k) = T(n-1,k) - 2*T(n-1,k-1) + 2*T(n,k-1) + T(n+1,k-1). Also, a recurrence involving antidiagonals is: T(n,k) = T(n-1,k) + Sum_{j=1..k} [3*T(n-1+j,k-j) - 2*T(n-2+j,k-j)] for n>k>=0.