cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118399 Eigenvector of the triangle of distinct partitions (A008289), so that: a(n) = Sum_{k=1..tri(n)} A008289(n,k)*a(k) for n>=1 with a(1)=1, where tri(n) = floor((sqrt(8*n+1)-1)/2).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 6, 8, 11, 15, 18, 24, 29, 37, 47, 57, 69, 86, 103, 125, 154, 183, 220, 264, 316, 375, 450, 533, 631, 747, 882, 1035, 1222, 1428, 1674, 1959, 2282, 2653, 3088, 3578, 4142, 4790, 5525, 6363, 7330, 8410, 9644, 11050, 12633, 14424, 16459, 18743
Offset: 1

Views

Author

Paul D. Hanna, May 07 2006

Keywords

Crossrefs

Cf. A008289.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)
          -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))
        end:
    a:= proc(n) option remember; local l; l:= b(n, n);
          `if`(n=1, 1, add(l[i+1]*a(i), i=1..nops(l)-1))
        end:
    seq (a(n), n=1..60);  # Alois P. Heinz, Nov 18 2012
  • Mathematica
    zip = With[{m = Max[Length[#1], Length[#2]]}, PadRight[#1, m] + PadRight[#2, m]]&; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i < 1, {}, zip[b[n, i-1], If[i>n, {}, Join[{0}, b[n-i, i-1]]]]]]; a[n_] := a[n] = ( l = b[n, n]; If[n == 1, 1, Sum[l[[i+1]]*a[i], {i, 1, Length[l]-1}]]);  Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Feb 12 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=if(n<0,0,if(n==1,1,sum(k=1,floor((sqrt(8*n+1)-1)/2), a(k)*polcoeff(polcoeff(prod(i=1,n, 1+y*x^i,1+x*O(x^n)),n,x),k,y))))}