cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118436 Column 0 of triangle A118435.

Original entry on oeis.org

1, 1, -3, -11, 25, 41, -43, 29, -335, -1199, 3117, 6469, -10295, -8839, -16123, -108691, 354145, 873121, -1721763, -2521451, 1476985, -6699319, 34182197, 103232189, -242017775, -451910159, 597551757, 130656229, 2465133865, 10513816601, -29729597083, -66349305331
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Comments

Binomial transform of A118434 = (1, 1, 3, 11, 25, 41, 43, -29, -335, -1199, ...). - Gary W. Adamson, Sep 19 2008

Crossrefs

Cf. A118434, A118435 (triangle), A118437 (row sums).

Programs

  • Mathematica
    LinearRecurrence[{0, -5, 0, -19, 0, 25}, {1, 1, -3, -11, 25, 41}, 32] (* Jean-François Alcover, Apr 08 2024 *)
    CoefficientList[Series[(1+x+2x^2-6x^3+29x^4+5x^5)/((1-x^2)(1+6x^2+25x^4)),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    {a(n)=polcoeff((1+x+2*x^2-6*x^3+29*x^4+5*x^5)/(1-x^2)/(1+6*x^2+25*x^4+x*O(x^n)),n)}

Formula

G.f.: (1 + x + 2*x^2 - 6*x^3 + 29*x^4 + 5*x^5)/((1-x^2)*(1 + 6*x^2 + 25*x^4)).